The immediate-early regulatory protein ICP22 is required for efficient replication of herpes simplex virus type 1 in some cell types (permissive) but not in others (restrictive). In mice infected via the ocular route, the pathogenesis of an ICP22- virus, 22/n199, was altered relative to that of wild-type virus. Specifically, tear film titers of 22/n199-infected mice were significantly reduced at 3 h postinfection relative to those of mice infected with wild-type virus. Further, 22/n199 virus titers were below the level of detection in trigeminal ganglia (TG) during the first 9 days postinfection. On day 30 postinfection, TG from 22/n199-infected mice contained reduced viral genome loads and exhibited reduced expression of latency-associated transcripts and reduced reactivation efficiency relative to TG from wild-type virus-infected mice. Notably, the first detectable alteration in the pathogenesis of 22/n199 in these tests occurred in the eye prior to the onset of nascent virus production. Thus, ICP22- virions appeared to be degraded, cleared, or adsorbed more rapidly than wild-type virions, implying potential differences in the composition of the two virion types. Analysis of the protein composition of purified extracellular virions indicated that ICP22 is not a virion component and that 22/n199 virions sediment at a reduced density relative to wild-type virions. Although similar to wild-type virions morphologically, 22/n199 virions contain reduced amounts of two gamma2 late proteins, US11 and gC, and increased amounts of two immediate-early proteins, ICP0 and ICP4, as well as protein species not detected in wild-type virions. Although ICP22- viruses replicate to near-wild-type levels in permissive cells, the virions produced in these cells are biochemically and physically different from wild-type virions. These virion-specific differences in ICP22- viruses add a new level of complexity to the functional analysis of this immediate-early viral regulatory protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1617265PMC
http://dx.doi.org/10.1128/JVI.01061-06DOI Listing

Publication Analysis

Top Keywords

wild-type virions
20
relative wild-type
12
virions
11
wild-type
9
icp22 required
8
herpes simplex
8
simplex virus
8
virus type
8
regulatory protein
8
mice infected
8

Similar Publications

Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus associated with Kaposi's sarcoma and B cell malignancies. Like all herpesviruses, KSHV contains conserved envelope glycoproteins (gps) involved in virus binding, entry, assembly, and release from infected cells, which are also targets of the immune response. Due to the lack of a reproducible animal model of KSHV infection, the precise functions of the KSHV gps during infection are not completely known.

View Article and Find Full Text PDF

A Lambda-evo (λ) phage platform for Zika virus E protein display.

Appl Microbiol Biotechnol

January 2025

Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional No, 2508, C.P. 07360, Mexico City, Mexico.

One of the most significant bacteriophage technologies is phage display, in which heterologous peptides are exhibited on the virion surface. This work describes the display of λ decorative protein D linked to the E protein domain III of Zika virus (D-ZE), to the GFP protein (D-GFP), or to different domain III epitopes of the E protein (D-TD), exhibited on the surface of an in vitro evolved lambda phage (λ). This phage harbors a gene D deletion and was subjected to directed evolution using Escherichia coli W3110/pD-ZE as background.

View Article and Find Full Text PDF

Evaluating the Impact of N-Glycan Sequon Removal in the p27 Peptide on RSV F Protein Immunogenicity and Functionality.

Viruses

November 2024

Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium.

Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in young children, elderly and immunocompromised patients worldwide. The RSV fusion (F) protein, which has 5-6 N-glycosylation sites depending on the strain, is a major target for vaccine development. Two to three of these sites are located in the p27 peptide, which is considered absent in virions.

View Article and Find Full Text PDF

Development Using Bioluminescence Imaging of a Recombinant Anguillid Herpesvirus 1 Vaccine Candidate Associated with Normal Replication In Vitro but Abortive Infection In Vivo.

Vaccines (Basel)

December 2024

Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium.

Background/objectives: Anguillid herpesvirus 1 (AngHV-1) (recently renamed Cyvirus anguillidallo 1) is the etiologic agent of a lethal disease that affects several eel species. It is thought to be one of the main infectious agents causing a population decline in wild eels and economic loss within the eel aquaculture sector. To date, no vaccines are available against AngHV-1.

View Article and Find Full Text PDF

Background: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a recently emerged tickborne virus in east Asia with over 18,000 confirmed cases. With a high case fatality ratio, SFTSV has been designated a high priority pathogen by the WHO and the NIAID. Despite this, there are currently no approved therapies or vaccines to treat or prevent SFTS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!