Brevetoxins (PbTxs) and ciguatoxins (CTXs) are two suites of dinoflagellate derived marine polyether neurotoxins that target the voltage gated sodium channel (VGSC). PbTxs are commonly responsible for massive fish kills and unusual mortalities in marine mammals. CTXs, more often noted for human intoxication, are suspected causes of fish and marine mammal intoxication, although this has never been reported in the field. VGSCs, present in the membrane of all excitable cells including those found in skeletal muscle, nervous and heart tissues, are found as isoforms with differential expression within species and tissues. To investigate the tissue and species susceptibility to these biotoxins, we determined the relative affinity of PbTx-2 and -3 and P-CTX-1 to native VGSCs in the brain, heart, and skeletal muscle of rat and the marine teleost fish Centropristis striata by competitive binding in the presence of [(3)H]PbTx-3. No differences between rat and fish were observed in the binding of PbTxs and CTX to either brain or skeletal muscle. However, [(3)H]PbTx-3 showed substantial lower affinity to rat heart tissue while in the fish it bound with the same affinity to heart than to brain or skeletal muscle. These new insights into PbTxs and CTXs binding in fish and mammalian excitable tissues indicate a species related resistance of heart VGSC in the rat; yet, with comparable sensitivity between the species for brain and skeletal muscle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2006.07.032 | DOI Listing |
Cell Tissue Res
January 2025
Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
Traditional transcriptomic studies often overlook the complex heterogeneity of skeletal muscle, as they typically isolate RNA from mixed muscle fibre and cell populations, resulting in an averaged transcriptomic profile that obscures fibre type-specific differences. This study assessed the potential of the recently developed Xenium platform for high-resolution spatial transcriptomic analysis of human skeletal muscle histological sections. Human vastus lateralis muscle samples from two individuals were analysed using the Xenium platform and Human Multi-Tissue and Cancer Panel targeting 377 genes complemented by staining of successive sections for Myosin Heavy Chain isoforms to differentiate between type 1 and type 2 muscle fibres.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Medical College, the Catholic University of Korea, Seoul, Korea, Republic of (South).
Background: Although previous studies have demonstrated cognitive impairment in elderly individuals with sarcopenia and its neuronal substrates, there is no comprehensive model integrating multiple brain pathologies to predict cognitive impairment associated with sarcopenia. The aim of this study was to explore a comprehensive prediction model for cognitive impairment in sarcopenia using multimodal neuroimaging methods in non-demented older adults.
Method: This cross-sectional study used data from the Catholic Aging Brain Imaging Database study, a population-based cohort study with magnetic resonance imaging (MRI) scans, positron emission tomography (PET) scans, and clinical data.
Alzheimers Dement
December 2024
Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
Background: Within the research field of neurodegenerative disorders, unbiased analysis of body fat composition, particularly muscle mass, is gaining attention as a potential biological marker for refining Alzheimer's disease risk. The objective of this study was to employ a deep learning model for fully automated and accurate segmentation of thigh tissues, potentially contributing to early Alzheimer's diagnostics.
Method: In an IRB-approved study, 49 participants underwent thigh Dixon MRI scans with a TR=9.
Alzheimers Dement
December 2024
Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
Background: Emerging research underscores the significance of midlife obesity, defined by a BMI of 30 kg/m or higher in persons age 40-60 years, as a risk factor for Alzheimer's disease (AD) in later life. Due to the various properties of each body component, it is important to characterize the neurodegenerative effects of fat within the muscle, known as a predictor of metabolic health and cognition. We investigated the relationships between thigh total fat-to-muscle ratio (FMR) and brain cortical thickness in cognitively normal midlife individuals.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
USC Leonard Davis School of Gerontology, Los Angeles, CA, USA.
Background: Alzheimer's disease (AD) is associated with complex pathophysiology including synaptic dysregulation, compromised neurotrophic signaling, deficits in autophagic flux and neuroinflammation). Skeletal muscle regulates many brain functions relevant to aging, by activating the muscle-to-brain axis through the secretion of skeletal muscle originating factors (myokines) with cellular-modifying, neuro and geroprotective properties. Our group developed transgenic mice that overexpress the skeletal muscle human Transcription Factor EB (TFEB), a master regulator of lysosomal-to-nucleus signaling, resulting in enhanced proteostasis and neuroprotection in a Tau mouse model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!