Biology of the adult enteric neural stem cell.

Dev Dyn

Grupo de Medicina Regenerativa, Unidad de Ingeniería de Tejidos y Terapia Celular, Instituto Nacional de Rehabilitación, Secretaría de Salud, Tlalpan, Mexico City, Mexico.

Published: January 2007

An increasing body of evidence has accumulated in recent years supporting the existence of neural stem cells in the adult gut. There are at least three groups that have obtained them using different methodologies and have described them in vitro. There is a growing amount of knowledge on their biology, but many questions are yet unanswered. Among these questions is whether these cells are part of a permanent undifferentiated pool or are recruited in a regular basis; in addition, the factors and genes involved in their survival, proliferation, migration, and differentiation are largely unknown. Finally, with between 10 and 20% of adults suffering from diseases involving the enteric nervous system, most notably irritable bowel syndrome and gastroesophageal reflux, what is the possible role of enteric nervous stem cells in health and disease?

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.20954DOI Listing

Publication Analysis

Top Keywords

neural stem
8
stem cells
8
enteric nervous
8
biology adult
4
adult enteric
4
enteric neural
4
stem cell
4
cell increasing
4
increasing body
4
body evidence
4

Similar Publications

Background: Human pluripotent stem cell (hPSC)-derived brain organoids patterned towards the cerebral cortex are valuable models of interactions occurring in vivo in cortical tissue. We and others have used these cortical organoids to model dominantly inherited FTD-tau. While these studies have provided essential insights, cortical organoid models have yet to reach their full potential.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (hiPSC)-based disease modeling can be successfully recapitulated to mimic disease characteristics across various human pathologies. Glaucoma, a progressive optic neuropathy, primarily affects the retinal ganglion cells (RGCs). While multiple groups have successfully generated RGCs from non-diseased hiPSCs, producing RGCs from glaucomatous human samples holds significant promise for understanding disease pathology by revealing patient-specific disease signatures.

View Article and Find Full Text PDF

Effective therapies for cognitive impairments induced by brain irradiation are currently lacking. This study investigated the therapeutic potential of hyperbaric oxygen therapy (HBOT) for radiation-induced brain injury in a randomized controlled experimental model using adult male Wistar rats. Adult male Wistar rats were divided into four experimental groups: 0 Gy whole brain radiotherapy (WBRT) with normal baric air (NBA) treatment, 0 Gy WBRT with HBOT, 10 Gy WBRT with NBA, and 10 Gy WBRT with HBOT.

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells (BMSCs) -derived extracellular vesicles (EVs), especially small EVs (sEVs), were vastly reported to enable multiple restorative effects on ischemic stroke, yet the protective mechanism of blood-brain barrier (BBB) has not been fully illustrated. In the present study, we investigated the therapeutic effects and mechanism of BMSCs-derived sEVs on BBB injury after ischemic stroke. In-vivo, administering sEVs to transient middle cerebral artery occlusion (tMCAo) mice mitigated the brain infarct volume, BBB permeability and neural apoptosis, and improved the cerebral blood flow perfusion and neurological function.

View Article and Find Full Text PDF

Molecular and cellular dynamics of the developing human neocortex.

Nature

January 2025

The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.

The development of the human neocortex is highly dynamic, involving complex cellular trajectories controlled by gene regulation. Here we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and the primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!