AI Article Synopsis

  • The study investigated the impact of glucocorticoid methylprednisolone sodium succinate (MPSS) on bone regeneration in rats after bone marrow ablation, finding that high doses of MPSS inhibited new bone formation.
  • By day 7 post-ablation, newly-formed bone volume was significantly lower in the MPSS-treated group, which still showed immature bone on day 10, despite no differences in osteoclast numbers or osteoblast differentiation markers observed across groups.
  • TEM results indicated that while osteoblast shape remained unchanged, osteoclasts from the MPSS group exhibited less developed ruffled borders, highlighting how high-dose MPSS affects bone regeneration and offers insights for

Article Abstract

We analyzed the effect of glucocorticoid on bone regeneration after bone marrow ablation in tibiae of 8-week-old rats. Methylprednisolone sodium succinate (MPSS) was injected intramuscularly at a dose of 100 mg/kg/day for 3 days. Tibiae on days 1, 3, 5, 7, 10, 12, and 14 after ablation were subjected to tartrate-resistant acid phosphatase staining, immunohistochemistry, in situ hybridization, and transmission electron microscopy (TEM), and measurement of the volume of newly-formed bone and the osteoclast number. MPSS significantly decreased the newly-formed bone volume on day 7, and immature bone still remained on day 10 in the MPSS-treated group. The volume of this bone was significantly higher than that in the control group. However, there were no differences between the groups in the osteoclast number, the expression of mRNAs for osteoblast differentiation markers, and alkaline phosphatase and cathepsin K judged by immunohistochemistry. TEM findings showed no difference in the form of osteoblasts, whereas osteoclasts in the MPSS-treated group had less developed ruffled borders, compared to those in the control group. These results suggest that MPSS treatment affects neither the differentiation nor the shape of osteoblasts, and does not change the osteoclast number or the cathepsin K level. However, high dose MPSS inhibits both bone formation and resorption during bone regeneration after rat tibial bone marrow ablation, and inhibits ruffled border formation in osteoclasts. These data will be useful to develop bone regenerative therapies for bone diseases due to high dose steroid administration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.20355DOI Listing

Publication Analysis

Top Keywords

bone
13
high dose
12
bone marrow
12
marrow ablation
12
osteoclast number
12
bone formation
8
formation resorption
8
resorption bone
8
bone regeneration
8
newly-formed bone
8

Similar Publications

Qualitative methods: the missing link in orthopaedic research.

Bone Joint Res

January 2025

The Division of Nursing, Midwifery and Social Work, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, London, United Kingdom.

View Article and Find Full Text PDF

Aim: Calcium silicate-based cements have been widely used in dentistry mainly due to their physicochemical and biological properties. Commercially available materials use radiopacifiers containing metals (bismuth, tantalum, tungsten and/or zirconium). To investigate volumetric changes, in vivo biocompatibility and systemic migration from eight commercially available materials, including powder/liquid and 'ready-to-use' presentations.

View Article and Find Full Text PDF

Introduction: Many interventional strategies are commonly used to treat chronic low back pain (CLBP), though few are specifically intended to target the distinct underlying pathomechanisms causing low back pain. Restorative neurostimulation has been suggested as a specific treatment for mechanical CLBP resulting from multifidus dysfunction. In this randomized controlled trial, we report outcomes from a cohort of patients with CLBP associated with multifidus dysfunction treated with restorative neurostimulation compared to those randomized to a control group receiving optimal medical management (OMM) over 1 year.

View Article and Find Full Text PDF

Background: Nasopharyngeal cancer (NPC) is a common head and neck malignant tumor, which is difficult to treat at the advanced NPC due to its occult and high metastatic potential to the cervical lymph nodes and distant organs. Low-dose radiotherapy (LDRT) is increasingly being investigated for potential cancer treatment. When combined with immune checkpoint inhibitors, LDRT has been shown to significantly improve the immune microenvironment of tumors, thereby promote the immune attack on tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!