The modeling of the severe acute respiratory syndrome coronavirus helicase ATPase catalytic domain was performed using the protein structure prediction Meta Server and the 3D Jury method for model selection, which resulted in the identification of 1JPR, 1UAA and 1W36 PDB structures as suitable templates for creating a full atom 3D model. This model was further utilized to design small molecules that are expected to block an ATPase catalytic pocket thus inhibit the enzymatic activity. Binding sites for various functional groups were identified in a series of molecular dynamics calculation. Their positions in the catalytic pocket were used as constraints in the Cambridge structural database search for molecules having the pharmacophores that interacted most strongly with the enzyme in a desired position. The subsequent MD simulations followed by calculations of binding energies of the designed molecules were compared to ATP identifying the most successful candidates, for likely inhibitors - molecules possessing two phosphonic acid moieties at distal ends of the molecule.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7088412PMC
http://dx.doi.org/10.1007/s10822-006-9057-zDOI Listing

Publication Analysis

Top Keywords

severe acute
12
acute respiratory
12
respiratory syndrome
12
syndrome coronavirus
12
coronavirus helicase
12
atpase catalytic
12
helicase atpase
8
catalytic domain
8
catalytic pocket
8
three dimensional
4

Similar Publications

Acute rhinosinusitis causes more than 30 million patients to seek health care per year in the United States. Respiratory tract infections, including bronchitis and sinusitis, account for 75% of outpatient antibiotic prescriptions in primary care. Sinusitis is a clinical diagnosis; the challenge lies in distinguishing between the symptoms of bacterial and viral sinusitis.

View Article and Find Full Text PDF

Neutrophils play key protective roles in influenza infections, yet excessive neutrophilic inflammation is a hallmark of acute lung injury during severe infections. Phenotypic heterogeneity is increasingly recognized in neutrophil populations; however, how functional variation in neutrophils between individuals determine the diverse outcomes of influenza remains unclear. To examine immunologic responses that may drive varying outcomes in influenza, we infected C57BL/6 (B6) and A/J mice with mouse-adapted influenza A virus A/PR/8/34 H1N1.

View Article and Find Full Text PDF

Background: Nirmatrelvir with ritonavir (Paxlovid) is indicated for patients with Coronavirus Disease 2019 (COVID-19) who are at risk for progression to severe disease due to the presence of one or more risk factors. Millions of treatment courses have been prescribed in the United States alone. Paxlovid was highly effective at preventing hospitalization and death in clinical trials.

View Article and Find Full Text PDF

Opioid dependence is defined by an aversive withdrawal syndrome upon drug cessation that can motivate continued drug-taking, development of opioid use disorder, and precipitate relapse. An understudied but common opioid withdrawal symptom is disrupted sleep, reported as both insomnia and daytime sleepiness. Despite the prevalence and severity of sleep disturbances during opioid withdrawal, there is a gap in our understanding of their interactions.

View Article and Find Full Text PDF

A Dual-Channel Fluorescence Probe for Early Diagnosis and Treatment Monitoring of Acute Kidney Injury by Detecting HOCl and Cys with Different Fluorescence Signals.

Anal Chem

January 2025

State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu Lanzhou 730000, China.

The pathogenesis of acute kidney injury (AKI) is a multifaceted process involving various mechanisms, with oxidative stress playing a crucial role in its development. Hypochlorite (HOCl) and cysteine (Cys) are indicators of oxidative stress in AKI pathophysiology, directly reflecting the degree of oxidative stress and disease severity. However, their exact mechanism of action in AKI pathophysiology remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!