A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Agrobacterium-mediated genetic transformation of tea leaf explants: effects of counteracting bactericidity of leaf polyphenols without loss of bacterial virulence. | LitMetric

Tea is one of the major crops in Asia and Africa, and its improvement by genetic modification is important for economy of many tea-producing regions. Although somatic embryos derived from cotyledon explants have been transformed with Agrobacterium, the leaves of several commercially important tea cultivars have remained recalcitrant to transformation, largely due to bactericidal effect of polyphenols that are exuded by tea leaves in vitro. Moreover, the commonly used polyphenol adsorbents and antioxidants cannot overcome this problem. Leaf explants, however, are more desirable than cotyledon-derived somatic embryos, especially when it is necessary to further improve a selected elite and also retain its superior traits. Thus, we developed a procedure for Agrobacterium-mediated genetic transformation of tea leaf explants which is based on the presence of L-glutamine in the co-cultivation medium. We then showed that the transformation process is facilitated via a protective action of L-glutamine against bactericidal effects of leaf polyphenols without affecting the bacterial virulence (vir) gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-006-0211-9DOI Listing

Publication Analysis

Top Keywords

leaf explants
12
agrobacterium-mediated genetic
8
genetic transformation
8
transformation tea
8
tea leaf
8
leaf polyphenols
8
bacterial virulence
8
somatic embryos
8
tea
5
leaf
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!