Vanilloid receptor type 1 (TRPV1) is a ligand-gated nonselective cation channel that is considered to be an important integrator of various pain stimuli such as endogenous lipids, capsaicin, heat, and low pH. In addition to expression in primary afferents, TRPV1 is also expressed in the CNS. To test the hypothesis that the CNS plays a differential role in the effect of TRPV1 antagonists in various types of pain, the analgesic effects of two TRPV1 antagonists with similar in vitro potency but different CNS penetration were compared in vivo. Oral administration of either A-784168 (1-[3-(trifluoromethyl)pyridin-2-yl]-N-[4-(trifluoromethylsulfonyl)phenyl]-1,2,3,6-tetrahydropyridine-4-carboxamide) (good CNS penetration) or A-795614 (N-1H-indazol-4-yl-N'-[(1R)-5-piperidin-1-yl-2,3-dihydro-1H-inden-1-yl]urea) (poor CNS penetration) blocked capsaicin-induced acute pain with the same potency. In complete Freund's adjuvant (CFA)-induced chronic inflammatory pain, oral administration of either compound blocked thermal hyperalgesia with similar potency. Furthermore, intraplantar or intrathecal administration of A-784168 blocked CFA-induced thermal hyperalgesia, suggesting that both peripheral and CNS TRPV1 receptors may play a role in inflammatory thermal hyperalgesia. The effects of the two TRPV1 antagonists were further assessed in models presumably mediated by central sensitization, including CFA- and capsaicin-induced mechanical allodynia and osteoarthritic pain. In these models, the potency of the two compounds was similar after intrathecal administration. However, when administered orally, A-784168, with good CNS penetration, was much more potent than A-795614. Together, these results demonstrate that TRPV1 receptors in the CNS play an important role in pain mediated by central sensitization. In addition, these results demonstrate that significant CNS penetration is necessary for a TRPV1 antagonist to produce broad-spectrum analgesia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6674601 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1246-06.2006 | DOI Listing |
Pathogens
December 2024
Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.
Brain abscesses are invasive infections of the central nervous system with a high level of treatment complexity especially in pediatric patients. Here, we describe a 3-month-old infant with multiple brain abscesses caused by methicillin-susceptible (MSSA). The patient was initially treated with empirical antibiotics (ceftriaxone, metronidazole, vancomycin).
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Neurology, Division of Neuro-Oncology, University of California, Irvine, CA 92697, USA.
: Anaplastic oligodendrogliomas (AOs) are central nervous system (CNS) World Health Organization (WHO) grade 3 gliomas characterized by isocitrate dehydrogenase (IDH) mutation (m)IDH and 1p/19q codeletion. AOs are typically treated with surgery and chemoradiation. However, chemoradiation can cause detrimental late neurocognitive morbidities and an accelerated disease course.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India.
Meningitis is the acute or chronic inflammation of the protective membranes, surrounding the brain and spinal cord, and this inflammatory process spreads throughout the subarachnoid space. The traditional drug delivery methods pose a disadvantage in limiting the capacity of crossing the blood-brain barrier (BBB) to reach the central nervous system (CNS). Hence, it is imperative to develop novel approaches that can overcome these constraints and offer efficient therapy for meningitis.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Maharaja Ranjit Singh Punjab Technical University Pharma Innovation Lab, Department of Pharmaceutical Sciences & Technology Bathinda India.
Aim: The aim of the current study was to explore nano-formulation for effective neuroprotection by auranofin.
Background: Currently, the treatment options for various CNS disorders, particularly neurodegenerative disorders, are greatly constrained. A significant obstacle in this pursuit is the blood-brain barrier, a shielding covering that hinders the route of numerous biochemical treatments into the brain.
Biomed Mater
January 2025
School of Medicine , Jiangsu University, zhenjinag, Zhenjiang, jiangsu, 212013, CHINA.
Ferritin nanocarriers, which can penetrate the blood-brain barrier (BBB), have gained significant research interest for the diagnosis and treatment of central nervous system (CNS) diseases, including gliomas, Alzheimer's disease, and brain metastases. In recent years, ferritin has been proved as a candidate to cross the BBB using receptor-mediated transcytosis (RMT) mechanism through transferrin receptor 1 (TfR1) which is overexpressed in the cells of the BBB. Various types of cargo molecules, including therapeutics, imaging agents, nucleic acids, and metal nanoparticles, have been incorporated into ferritin nanocages for the diagnosis and treatment of CNS diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!