Unique uptake and efflux systems of inorganic phosphate in osteoclast-like cells.

Am J Physiol Cell Physiol

Department of Molecular Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Kuramoto-Cho 3-18-15, Tokushima City 770-8503, Japan.

Published: January 2007

During bone resorption, a large amount of inorganic phosphate (P(i)) is generated within the osteoclast hemivacuole. The mechanisms involved in the disposal of this P(i) are not clear. In the present study, we investigated the efflux of P(i) from osteoclast-like cells. P(i) efflux was activated by acidic conditions in osteoclast-like cells derived by the treatment of RAW264.7 cells with receptor activator of nuclear factor-kappaB ligand. Acid-induced P(i) influx was not observed in renal proximal tubule-like opossum kidney cells, osteoblast-like MC3T3-E1 cells, or untreated RAW264.7 cells. Furthermore, P(i) efflux was stimulated by extracellular P(i) and several P(i) analogs [phosphonoformic acid (PFA), phosphonoacetic acid, arsenate, and pyrophosphate]. P(i) efflux was time dependent, with 50% released into the medium after 10 min. The efflux of P(i) was increased by various inhibitors that block P(i) uptake, and extracellular P(i) did not affect the transport of [(14)C]PFA into the osteoclast-like cells. Preloading of cells with P(i) did not stimulate P(i) efflux by PFA, indicating that the effect of P(i) was not due to transstimulation of P(i) transport. P(i) uptake was also enhanced under acidic conditions. Agents that prevent increases in cytosolic free Ca(2+) concentration, including acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, 2-aminoethoxydiphenyl borate, and bongkrekic acid, significantly inhibited P(i) uptake in the osteoclast-like cells, suggesting that P(i) uptake is regulated by Ca(2+) signaling in the endoplasmic reticulum and mitochondria of osteoclast-like cells. These results suggest that osteoclast-like cells have a unique P(i) uptake/efflux system and can prevent P(i) accumulation within osteoclast hemivacuoles.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00357.2006DOI Listing

Publication Analysis

Top Keywords

osteoclast-like cells
28
cells
12
inorganic phosphate
8
cells efflux
8
acidic conditions
8
raw2647 cells
8
efflux
7
osteoclast-like
7
unique uptake
4
uptake efflux
4

Similar Publications

Exploring the Biological Impact of β-TCP Surface Polarization on Osteoblast and Osteoclast Activity.

Int J Mol Sci

December 2024

Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan.

β-tricalcium phosphate (β-TCP) is a widely utilized resorbable bone graft material, whose surface charge can be modified by electrical polarization. However, the specific effects of such a charge modification on osteoblast and osteoclast functions remain insufficiently studied. In this work, electrically polarized β-TCP with a high surface charge density was synthesized and evaluated in vitro in terms of its physicochemical properties and biological activity.

View Article and Find Full Text PDF

Keratin positive giant cell rich tumor is a rare mesenchymal tumor first described in 2025. It can occur in both soft tissue and bone and predominantly affects young women. The tumor's biological behavior remains uncertain despite its low-grade classification.

View Article and Find Full Text PDF

Impact of Particle Size and Sintering Temperature on Calcium Phosphate Gyroid Structure Scaffolds for Bone Tissue Engineering.

J Funct Biomater

November 2024

Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany.

Due to the chemical composition and structure of the target tissue, autologous bone grafting remains the gold standard for orthopedic applications worldwide. However, ongoing advancements in alternative grafting materials show that 3D-printed synthetic biomaterials offer many advantages. For instance, they provide high availability, have low clinical limitations, and can be designed with a chemical composition and structure comparable to the target tissue.

View Article and Find Full Text PDF

SARS-CoV-2 ORF8 drives osteoclastogenesis in preexisting immune-mediated inflammatory diseases.

JCI Insight

December 2024

Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Patients with immune-mediated inflammatory diseases (IMIDs) like rheumatoid arthritis (RA) are at higher risk for severe COVID-19 and long-term complications in bone health. Emerging clinical evidence demonstrated that SARS-CoV-2 infection reduces bone turnover and promotes bone loss, but the mechanism underlying worsened bone health remains elusive. This study sought to identify specific immune mediators that exacerbated preexisting IMIDs after SARS-CoV-2 exposure.

View Article and Find Full Text PDF

Objective: Bone resorption mediated by osteoclast differentiation induces the occurrence of bone-related diseases. Macrophages, an origin of osteoclasts, whose M2 type can reduce inflammation-induced bone damage. We aimed to investigate the effect of M2 macrophage-derived exosomes on osteoclast formation and elucidate its underlying mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!