Background: Erythrocyte glucose-6-phosphate dehydrogenase (G6PD) activity is closely related to free radical production. alpha-Tocopherol (alpha-T) is implicated with the reduction of lipid peroxidation.
Aim: To investigate the effect of training and alpha-T supplementation on the erythrocyte G6PD activity.
Methods: Blood was obtained from 10 basketball players pre-game (group A), post-game (group B) and after 30 days on alpha-T (dl-alpha-tocopheryl-acetate, 200mg 24h(-1) orally) supplementation pre- (group C) and post-training (group D). alpha-T and catecholamines were evaluated with HPLC methods and creatine kinase, lactate dehydrogenase, total antioxidant status (TAS) and G6PD activity with commercial kits.
Results: TAS was increased in the groups with alpha-T addition (groups C and D). Post-exercise, TAS and G6PD activity were remarkably higher (2.10+/-0.13mmoll(-1), 7.92+/-1.5Ug(-1)Hb, respectively) in group D than those in group B (0.92+/-0.10mmoll(-1), 4.8+/-1.4Ug(-1)Hb, p<0.01, respectively). G6PD activity positively correlated with TAS (r=0.64, p<0.001) in all the studied groups.
Conclusions: Supplementation with alpha-T may protect G6PD activity from reduction induced by forced training.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phrs.2006.07.003 | DOI Listing |
Life Metab
February 2025
Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in the pentose phosphate pathway (PPP) in glycolysis. Glucose metabolism is closely implicated in the regulation of mitophagy, a selective form of autophagy for the degradation of damaged mitochondria. The PPP and its key enzymes such as G6PD possess important metabolic functions, including biosynthesis and maintenance of intracellular redox balance, while their implication in mitophagy is largely unknown.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Malmö, Sweden.
The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China. Electronic address:
Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, impacts cancer cell proliferation and plant stress responses. However, its role in plant cell dedifferentiation and callus formation is not well understood. This study explores the function of cytoplasmic G6PD isoforms in Arabidopsis pericycle cell reprogramming into callus by employing a suite of mutant analyses, qRT-PCR, and GC-MS.
View Article and Find Full Text PDFBlood
January 2025
St Jude Children's Research Hospital, Memphis, Tennessee, United States.
Recurrent IDH mutations catalyze NADPH-dependent production of oncometabolite R-2HG for tumorigenesis. IDH inhibition provides clinical response in a subset of acute myeloid leukemia (AML) cases; however, most patients develop resistance, highlighting the need for more effective IDH-targeting therapies. By comparing transcriptomic alterations in isogenic leukemia cells harboring CRISPR base-edited IDH mutations, we identify the activation of adhesion molecules including CD44, a transmembrane glycoprotein, as a shared feature of IDH-mutant leukemia, consistent with elevated CD44 expression in IDH-mutant AML patients.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
University of Münster, Department of Biology, Institute of Plant Biology and Biotechnology, Molecular Physiology of Plants, Schlossplatz 7, 48149 Münster, Germany.
The oxidative pentose phosphate pathway (OPPP) plays an important role for the generation of reducing power in all eukaryotes. In plant cells the OPPP operates in several cellular compartments, but as full cycle only in the plastid stroma where it is essential. As suggested by our recent results, OPPP reactions are also mandatory inside peroxisomes, at least during fertilisation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!