In this paper, a general electrokinetic theory for concentrated suspensions in salt-free media is derived. Our model predicts the electrical conductivity and the electrophoretic mobility of spherical particles in salt-free suspensions for arbitrary conditions regarding particle charge, volume fraction, counterion properties, and overlapping of double layers of adjacent particles. For brevity, hydrolysis effects and parasitic effects from dissolved carbon dioxide, which are present to some extent in more "realistic" salt-free suspensions, will not be addressed in this paper. These issues will be analyzed in a forthcoming extension. However, previous models are revised, and different sets of boundary conditions, frequently found in the literature, are extensively analyzed. Our results confirm the so-called counterion condensation effect and clearly display its influence on electrokinetic properties such as electrical conductivity and electrophoretic mobility for different theoretical conditions. We show that the electrophoretic mobility increases as particle charge increases for a given particle volume fraction until the charge region where counterion condensation takes place is attained, for the above-mentioned sets of boundary conditions. However, it decreases as particle volume fraction increases for a given particle charge. Instead, the electrical conductivity always increases with either particle charge for fixed particle volume fraction or volume fraction for fixed particle charge, whatever the set of boundary conditions previously referred. In addition, the influence of the electric permittivity of the particles on their electrokinetic properties in salt-free media is examined for those frames of boundary conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0634712 | DOI Listing |
J Clin Med
January 2025
Department of Thoracic Surgery, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
Pectus excavatum, also known as sunken chest or funnel chest, is a structural deformity of the anterior chest wall, characterized by an inward sternum. This condition can lead to respiratory and cardiovascular issues, although it is often addressed for aesthetic reasons. This perspective article reviews the experiences of multiple centers in treating pectus excavatum, to explore whether a clear boundary exists between pathological and aesthetic needs.
View Article and Find Full Text PDFJ Clin Med
December 2024
2nd Department of Ophthalmology, Attikon Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece.
: Retinal vein occlusion (RVO) is a relatively uncommon condition with a complex pathophysiology. However, its association with traditional cardiovascular risk factors is well established. In this study, we compared arterial stiffness and endothelial function between patients with RVO and healthy controls.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Information Engineering, China University of Geosciences, Beijing 100083, China.
Extracting fragmented cropland is essential for effective cropland management and sustainable agricultural development. However, extracting fragmented cropland presents significant challenges due to its irregular and blurred boundaries, as well as the diversity in crop types and distribution. Deep learning methods are widely used for land cover classification.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Applied Physics, National Defense Academy, Hashirimizu 1-10-20, Yokosuka 239-0802, Kanagawa, Japan.
Dielectrophoresis (DEP) cell separation technology is an effective means of separating target cells which are only marginally present in a wide variety of cells. To develop highly efficient cell separation devices, detailed analysis of the nonuniform electric field's intensity distribution within the device is needed, as it affects separation performance. Here we analytically expressed the distributions of the electric field and DEP force in a parallel-plate cell separation DEP device by employing electrostatic analysis through the Fourier series method.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Shandong Zhuoyue Precision Industry Group Co., Ltd., Jining 272114, China.
The 7000 series aluminum alloy represented by Al-Zn-Mg-Cu has good strength and toughness and is widely used in the aerospace field. However, its high Zn content results in poor corrosion resistance, limiting its application in other fields. In order to achieve the synergistic improvement of both strength and corrosion resistance, this study examines the response of strength, toughness and corrosion resistance of a high-strength aluminum alloy tail frame under aging conditions with external stresses of 135 MPa, 270 MPa and 450 MPa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!