Novel route to WOx nanorods and WS2 nanotubes from WS2 inorganic fullerenes.

J Phys Chem B

School of Mechanical, Materials and Manufacturing Engineering, the University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.

Published: September 2006

WO(x) (2 < x < 3) and WS(2) nanostructures have been widely praised due to applications as catalysts, solid lubricants, field emitters, and optical components. Many methods have been developed to fabricate these nanomaterials; however, most attention was focused on the same dimensional transformation from WO(x) nanoparticles or nanorods to WS(2) nanoparticles or nanotubes. In a solid-vapor reaction, by simply controlling the quantity of water vapor and reaction temperature, we have realized the transformation from quasi-zero-dimensional WS(2) nanoparticles to one-dimensional W(18)O(49) nanorods, and subsequent sulfuration reactions have further converted these W(18)O(49) nanorods into WS(2) nanotubes. The reaction temperature, quantity of water vapor, and pretreatment of the WS(2) nanoparticle precursors are important process parameters for long, thin, and homogeneous W(18)O(49) nanorods growth. The morphologies, crystal structures, and circling transformation mechanisms of sulfide-oxide-sulfide are discussed, and the photoluminescence properties of the resulting nanorods are investigated using a Xe lamp under an excitation of 270 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp062427jDOI Listing

Publication Analysis

Top Keywords

nanorods ws2
12
w18o49 nanorods
12
ws2 nanotubes
8
ws2 nanoparticles
8
quantity water
8
water vapor
8
reaction temperature
8
ws2
7
nanorods
6
novel route
4

Similar Publications

To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials.

View Article and Find Full Text PDF

The concept of non-trivial electronic structure combined with reduced dimensionality presents a promising strategy for advancing optical applications and energy harvesting technologies. Symmetry breaking in low dimensional system enables the emergence of non-linear optical responses, which are greatly amplified by the singular points of band inversion. Here, using first-principles calculations, the significant enhancement of the shift current in Bi nanotubes is investigated, driven by the combined effects of 1D geometry and non-trivial band order.

View Article and Find Full Text PDF

Ambipolar conduction in gated tungsten disulphide nanotube.

Nanoscale

December 2024

Department of Physics "E. R. Caianiello", University of Salerno, via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy.

Devices based on transition metal dichalcogenide nanotubes hold great potential for electronic and optoelectronic applications. Herein, the electrical transport and photoresponse characteristics of a back-gate device with a channel made of a single tungsten disulfide (WS) nanotube are investigated as functions of electric stress, ambient pressure, and illumination. As a transistor, the device exhibits p-type conduction, which can be transformed into ambipolar conduction at a high drain-source voltage.

View Article and Find Full Text PDF
Article Synopsis
  • 2D materials, such as transition metal-dichalcogenides like MoS, have gained significant attention for their unique layered structures, which lead to distinct physicochemical properties when isolated as single layers compared to their bulk forms.
  • The ability to stack and twist these layers creates new phenomena, such as Moiré patterns, while misfit layer compounds (MLCs) introduce unconventional lattice structures that allow for the formation of nanotubes.
  • The stability and behavior of these nanostructures, particularly under elevated temperatures, are important aspects that remain underexplored, prompting studies using advanced techniques like electron microscopy and synchrotron-based X-ray methods to understand their decomposition and recrystallization processes.
View Article and Find Full Text PDF

Tungsten disulfide nanotubes (WS-NTs), with their cylindrical structure composed of rolled WS sheets, have attracted much interest because of their unique physical properties reflecting quasi-one-dimensional chiral structures. They exhibit a semiconducting electronic structure regardless of their chirality, and various semiconducting and optoelectronic device applications have been demonstrated. The development of techniques to fabricate arrayed WS-NTs is crucial to realizing the highest device performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!