Surface interactions in molecular recognition of phosphonate imprinted organosilicates and the role of water have been studied. NMR and calorimetry studies have shown the changing nature of the surface water structure on silicate surfaces due to template directed molecular imprinting. Results indicate the interaction of an organophosphonate compound with the functionalized silica surfaces to be through surrounding water molecules. However, with nonfunctionalized surfaces, additional higher energy interactions were possible. Further, our results support the possible templating effect of water during the imprint process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp063880yDOI Listing

Publication Analysis

Top Keywords

surface interactions
8
interactions molecular
8
molecular recognition
8
recognition phosphonate
8
phosphonate imprinted
8
imprinted organosilicates
8
organosilicates role
8
role water
8
water
5
investigation surface
4

Similar Publications

Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage.

View Article and Find Full Text PDF

Adsorption Structure and Selectivity of Phenols in Water-Immersed Organomontmorillonite Investigated by Molecular Simulation.

Langmuir

January 2025

Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Tokyo, Hachioji 192-0015, Japan.

The two-dimensional interlayer space of layered materials has been highlighted due to their adsorption property, whose nanostructure in the water-immersed state is scarcely understood by experiment. Recent developments in molecular simulation have enabled researchers to investigate the interlayer structure, but water content is necessary for accurate modeling. In the present study, we proposed a theoretical method to estimate the saturated water content and adsorption selectivity of trichlorophenol and phenol in montmorillonite modified with hexadecyltrimethylammonium ions.

View Article and Find Full Text PDF

Neurons use cell-adhesion molecules (CAMs) to interact with other neurons and the extracellular environment: the combination of CAMs specifies migration patterns, neuronal morphologies, and synaptic connections across diverse neuron types. Yet little is known regarding the intracellular signaling cascade mediating the CAM recognitions at the cell surface across different neuron types. In this study, we investigated the neural developmental role of Afadin , a cytosolic adapter protein that connects multiple CAM families to intracellular F-actin.

View Article and Find Full Text PDF

Unlabelled: The ECM is a complex and dynamic meshwork of proteins that forms the framework of all multicellular organisms. Protein interactions within the ECM are critical to building and remodeling the ECM meshwork, while interactions between ECM proteins and cell surface receptors are essential for the initiation of signal transduction and the orchestration of cellular behaviors. Here, we report the development of MatriCom, a web application ( https://matrinet.

View Article and Find Full Text PDF

Biomolecular condensates are a ubiquitous component of cells, known for their ability to selectively partition and compartmentalize biomolecules without the need for a lipid membrane. Nevertheless, condensates have been shown to interact with lipid membranes in diverse biological processes, such as autophagy and T-cell activation. Since many condensates are known to have a net surface charge density and associated electric potential(s), we hypothesized that they can induce a local membrane potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!