Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Subthreshold summation between physical target lines and illusory contours induced by edges such as those produced in the Kanizsa illusion has been reported in previous studies. Here, we investigated the ability of line-induced illusory contours, using Ehrenstein figures, to produce similar subthreshold summation. In the first experiment, three stimulus conditions were presented. The target line was superimposed on the illusory contour of a four-arm Ehrenstein figure, or the target was presented between two dots (which replaced the arms of the Ehrenstein figure), or the target was presented on an otherwise blank screen (control). Detection of the target line was significantly worse when presented on the illusory contour (on the Ehrenstein figure) than when presented between two dots. This result was consistent for both curved and straight target lines, as well as for a 100 ms presentation duration and unlimited presentation duration. Performance was worst in the control condition. The results for the three stimulus conditions were replicated in a second experiment in which an eight-arm Ehrenstein figure was used to produce a stronger and less ambiguous illusory contour. In the third experiment, the target was either superimposed on the illusory contour, or was located across the central gap (illusory surface) of the Ehrenstein figure, collinear with two arms of the figure. As in the first two experiments, the target was either presented on the Ehrenstein figure, or between dots, or on a blank screen. Detection was better in the dot condition than in the Ehrenstein condition, regardless of whether the target was presented on the illusory contour or collinear with the arms of the Ehrenstein figure. These three experiments demonstrate the ability of reduced spatial uncertainty to facilitate the detection of a target line, but do not provide any evidence for subthreshold summation between a physical target line and the illusory contours produced by an Ehrenstein figure. The incongruence of these results with previous findings on Kanizsa figures is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1068/p5187 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!