Staphylococcus aureus can proliferate in iron-limited environments such as the mammalian host. The transcriptional profiles of 460 genes (iron-regulated, putative Fur-regulated, membrane transport, pathogenesis) obtained for S. aureus grown in iron-restricted environments in vitro and in vivo were compared in order to identify new iron-regulated genes and to evaluate their potential as possible therapeutic targets in vivo. Iron deprivation was created in vitro by 2,2-dipyridyl, and in vivo, S. aureus was grown in tissue cages implanted in mice. Bacterial RNA was obtained from each growth condition and cDNA probes were co-hybridized on DNA arrays. Thirty-six upregulated and 11 downregulated genes were commonly modulated in animals and in the low-iron medium. Real-time PCR confirmed the iron-dependent modulation of four novel genes (SACOL0161, 2170, 2369, 2431) with a Fur box motif. Some genes expressed in the dipyridyl medium were not expressed in vivo (e.g., copA, frpA, SACOL1045). Downregulated genes included an iron-storage protein gene and genes of the succinate dehydrogenase complex, reminiscent of a small RNA-dependent regulation thus far only demonstrated in Gram-negative bacteria. The expression of iron-regulated genes in distinct low-iron environments provided insight into their relative importance in vitro and in vivo and their usefulness for vaccine and drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micinf.2006.01.022 | DOI Listing |
Plant Sci
December 2024
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China. Electronic address:
As one of the heavy metal pollutants with strong biological toxicity, cadmium (Cd) is easily absorbed by plant roots, which seriously restricts the growth of plants, causes the quality of agricultural products to decline and threatens human health. Many complex signal transduction pathways are involved in the process of plant response to Cd stress. Among them, plant hormone ethylene is an important signal molecule for plant response to various environmental stresses, and its regulatory mechanism and signal transduction pathway in Cd stress response need to be further clarified.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA.
To discover new factors that are involved in iron acquisition by , we used RNA-Seq to identify the genes that are most highly induced when virulent strain 130b is cultured in a low-iron chemically defined medium. Among other things, this revealed , a heretofore uncharacterized gene that is predicted to be transcriptionally regulated by Fur and to encode a novel, ~15 kDa protein. was present in all strains examined and had homologs in a subset of the other species.
View Article and Find Full Text PDFJ Agric Food Chem
November 2024
State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi, China.
Selenium (Se) and zinc (Zn) deficiencies have become serious global food security and public health problems. Biofortification through foliar fertilizer is a nonspecific, low-tech, and cost-effective strategy. Se and Zn have overlapping physiological roles and interacting relationships in plants.
View Article and Find Full Text PDFAppl Environ Microbiol
November 2024
State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
J Agric Food Chem
September 2024
National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
Zinc (Zn) and nitrogen (N) are the two crucial nutrients for tea plant growth and development and contribute to the quality formation of tea fresh leaves. In this study, a zinc/iron-regulated transporter-like protein 4 gene (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!