Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To study the correlation between the thermal and chemical stability of insulin formulations with various insulin hexamer ligands.
Materials And Methods: The thermal stability was investigated using differential scanning calorimetry (DSC) and near-UV circular dichroism (NUV-CD). The formation of chemical degradation products was studied with reversed-phase and size-exclusion chromatography and mass spectrometry.
Results: An excellent correlation between the thermal stabilization by ligand binding and the deamidation of Asn(B3) was observed. The correlation between thermal stability and the formation of covalent dimer and other insulin related products was less clear. Zinc was found to specifically increase the deamidation and covalent dimer formation rate when the insulin hexamer was not further stabilized by phenolic ligand. Thiocyanate alone had no effect on the thermal stability of the insulin zinc-hexamer but significantly improved the chemical stability at 37 degrees C. At low temperatures thiocyanate induced a conformational change in the insulin hexamer. NUV-CD thermal scans revealed that this effect decreased with temperature; when the thermal denaturation temperature was reached, the effect was eliminated.
Conclusions: Thermal stability can be used to predict the rate of Asn(B3) deamidation in human insulin. Chemical degradation processes that do not rely on the structural stability of the protein do not necessarily correlate to the thermal stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-006-9098-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!