Purpose: To better understand the molecular mechanisms underlying the radio-protective effect of soybean isoflavone that we observed in our recent animal experiments.

Materials And Methods: We utilized a cDNA microarray to investigate the expression profiles of 4,096 known genes in the livers of irradiated-mice with or without soybean isoflavone treatment. Dye swap approach was employed to control for gene-specific dye bias and quantitative real-time RT-PCR was performed on several genes to validate the cDNA microarray data.

Results: Compared with the control group, 68 genes were up-regulated and 28 genes were down-regulated in mice treated with irradiation alone, whereas only 6 genes were down-regulated and 35 genes were up-regulated in mice treated with soybean isoflavone. Interestingly, some of the down-regulated genes in the irradiated group, such as DNA repair and stress response genes and cytoskeleton-associated genes, which are markers of cellular damage after irradiation, were maintained at close to normal expression levels after soybean isoflavone treatment.

Conclusions: Comparison of gene expression profiles in the livers of irradiated-mice treated with or without soybean isoflavone suggested that soybean isoflavone may be an efficient tool to reverse irradiation damage of the liver through multiple-pathways and also provides important clues to further pursue the molecular mechanisms underlying the radio-protective activity of soybean isoflavone.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00394-006-0614-yDOI Listing

Publication Analysis

Top Keywords

soybean isoflavone
32
expression profiles
12
treated soybean
12
genes
9
gene expression
8
soybean
8
isoflavone
8
molecular mechanisms
8
mechanisms underlying
8
underlying radio-protective
8

Similar Publications

Objectives: Soybeans have various positive effects on health, including anti-inflammatory and preventing kidney damage. There is concern regarding the phytoestrogen content due to the high isoflavone content in soybeans. Various forms of soybean processing have been tried; in this study, the hydrolysis method will be used to obtain the active substance Arginine-Glycine-Aspartate (RGD) tripeptide in soybean protein hydrolyzed by bromelain (SPHB).

View Article and Find Full Text PDF

Breast cancer treatment has advanced significantly, particularly for estrogen receptor-positive (ER+) tumors. Tamoxifen, an estrogen antagonist, is widely used; however, approximately 40% of patients develop resistance. Recent studies indicate that microRNAs, especially miR-155, play a critical role in this resistance.

View Article and Find Full Text PDF

Sustainable extraction of phytoestrogens from soybean and okara using green solvents.

Food Res Int

February 2025

Laboratório de Extração, Termodinâmica Aplicada e Equilíbrio - EXTRAE, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato,80, 13083-062 Campinas, SP, Brazil. Electronic address:

Soy extract waste, okara, is a rich source of bioactive compounds such as isoflavones, which are phytoestrogens with potential health benefits. To develop a green approach to recovering these compounds and valorizing okara, a study was developed to screen variables for the extraction of isoflavones from okara and soybean (for comparison) using Deep Eutectic Solvents (DES) composed with choline chloride ([Ch]Cl) and acetic acid (AA) ([Ch]Cl: AA, 1:2). A fractional design (2) was used to evaluate variables in the extraction of isoflavones, followed by a Central Composite Rotatable Design (CCRD).

View Article and Find Full Text PDF

Multi-omics analysis identified the GmUGT88A1 gene, which coordinately regulates soybean resistance to cyst nematode and isoflavone content.

Plant Biotechnol J

January 2025

Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China.

Soybean cyst nematode (SCN, Heterodera glycines) is a major pathogen harmful to soybean all over the world, causing huge yield loss every year. Soybean resistance to SCN is a complex quantitative trait controlled by a small number of major genes (rhg1 and Rhg4) and multiple micro-effect genes. Therefore, the continuous identification of new resistant lines and genes is needed for the sustainable development of global soybean production.

View Article and Find Full Text PDF

Shading stress promotes lignin biosynthesis in soybean seed coat and consequently extends seed longevity.

Int J Biol Macromol

January 2025

College of Life Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan 611130, China. Electronic address:

The macromolecular components of the seed coat, particularly lignin, play a critical role in regulating seed viability. In the maize-soybean intercropping (MSI) system, shading stress was reported to enhance the viability of soybean seeds. However, the specific role of seed coat lignin in this process remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!