Endothelial cells and pericytes play critical role in angiogenesis, which is controlled, in part, by the angiopoietin (Ang)/Tie-2 system and vascular endothelial growth factor (VEGF). Here, we investigated Ang, Tie-2, and VEGF expression within endothelial cells and pericyte interdigitations (EPI), which consist of cytoplasmic projections of pericytes and corresponding endothelial indentations. After subcutaneous implantation of a thermoreversible gelation polymer disc in rats, the capillary density was low on day 5, increased to a peak on day 7, and then decreased on days 10-20. A small number of EPI were observed on day 5, then increased sharply to a peak on day 10, but had decreased on day 20. Light and electron microscopy immunohistochemical and RNA in situ hybridization analyses revealed that Tie-2 localized at endothelial cells, and Ang-2 localized at endothelial cells and pericytes, while Ang-1 and VEGF localized at pericytes, and Ang-1 was most intensely observed at EPI of pericytes. Conventional quantitative RT-PCR and Western blot analyses revealed that the level of Ang-1 was low on days 5-7, then increased on days 10-20, while the level of VEGF was high on days 5-10, but had decreased on day 20. The level of Ang-2 remained high and Tie-2 remained at the level of the control on days 5-20. The present study showed that the angiogenic phase might be initiated by increases in Ang-2 and VEGF, while the microvessel maturation phase might be initiated by a relative increase in Ang-1 and a decrease in VEGF. Moreover, EPI might serve as a pathway for the Ang-1/Tie-2 system, with VEGF promoting pericyte recruitment for microvascular integrity.

Download full-text PDF

Source
http://dx.doi.org/10.1038/labinvest.3700476DOI Listing

Publication Analysis

Top Keywords

endothelial cells
16
vegf
8
tie-2 vegf
8
vegf expression
8
cells pericytes
8
day increased
8
peak day
8
day decreased
8
days 10-20
8
decreased day
8

Similar Publications

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

A Comprehensive Atlas of AAV Tropism in the Mouse.

Mol Ther

January 2025

Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!