Introduction: Cell-free DNA (CFDNA) is a reflection of both normal and tumor-derived DNA released into the circulation through cellular necrosis and apoptosis. We sought to determine whether tumor-specific plasma DNA could be used as a biomarker for tumor burden and response to therapy in an orthotopic ovarian cancer model.

Methods: Female nude mice injected intraperitoneally with HeyA8 ovarian cancer cells were treated with either docetaxel alone or in combination with anti-angiogenic agents (AEE788-dual VEGFR and EGFR antagonist or EA5-monoclonal antibody against ephrin A2). Following DNA extraction from plasma, quantification of tumor-specific DNA was performed by real-time PCR using human specific beta-actin primers. The number of genome equivalents (GE/ml) were determined from a standard curve. Apoptosis was assessed by TUNEL staining of treated tumors.

Results: The levels of tumor-specific DNA in plasma increased progressively with increasing tumor burden (R2=0.8, p<0.01). Additionally, tumor-specific plasma DNA levels varied following treatment with chemotherapy. In mice with established tumors (19 days following tumor injection), tumor-specific plasma DNA levels increased by 63% at 24 hours following a single dose of docetaxel (15 mg/kg), and then declined to 20% below baseline at 72 hours and were 83% lower than baseline 10 days following therapy. In addition, docetaxel treatment resulted in a significant increase in the apoptotic index at 24 hours (p<0.01). Moreover, in two separate therapy experiments using a combination of cytotoxic chemotherapy with anti-angiogenic agents, tumor-specific plasma DNA levels were significantly higher in mice treated with vehicle compared to the treatment groups. The correlation between tumor weight and tumor-specific DNA in these experiments was 0.71-0.76 (p<0.01).

Conclusions: Our results indicate that tumor-specific CFDNA levels correlate with increasing tumor burden and decline following therapy. Thus, tumor-specific DNA may be a useful surrogate biomarker of therapeutic response and should be evaluated in future clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cbt.5.10.3240DOI Listing

Publication Analysis

Top Keywords

cell-free dna
8
response therapy
8
tumor burden
8
ovarian cancer
8
tumor-specific dna
8
dna
7
circulating cell-free
4
dna novel
4
novel biomarker
4
biomarker response
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!