A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. | LitMetric

Pharmacogenetics, drug-metabolizing enzymes, and clinical practice.

Pharmacol Rev

Department of Medicine, Christchurch School of Medicine, Private Bag 4345, Christchurch, New Zealand.

Published: September 2006

The application of pharmacogenetics holds great promise for individualized therapy. However, it has little clinical reality at present, despite many claims. The main problem is that the evidence base supporting genetic testing before therapy is weak. The pharmacology of the drugs subject to inherited variability in metabolism is often complex. Few have simple or single pathways of elimination. Some have active metabolites or enantiomers with different activities and pathways of elimination. Drug dosing is likely to be influenced only if the aggregate molar activity of all active moieties at the site of action is predictably affected by genotype or phenotype. Variation in drug concentration must be significant enough to provide "signal" over and above normal variation, and there must be a genuine concentration-effect relationship. The therapeutic index of the drug will also influence test utility. After considering all of these factors, the benefits of prospective testing need to be weighed against the costs and against other endpoints of effect. It is not surprising that few drugs satisfy these requirements. Drugs (and enzymes) for which there is a reasonable evidence base supporting genotyping or phenotyping include suxamethonium/mivacurium (butyrylcholinesterase), and azathioprine/6-mercaptopurine (thiopurine methyltransferase). Drugs for which there is a potential case for prospective testing include warfarin (CYP2C9), perhexiline (CYP2D6), and perhaps the proton pump inhibitors (CYP2C19). No other drugs have an evidence base that is sufficient to justify prospective testing at present, although some warrant further evaluation. In this review we summarize the current evidence base for pharmacogenetics in relation to drug-metabolizing enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1124/pr.58.3.6DOI Listing

Publication Analysis

Top Keywords

evidence base
16
prospective testing
12
drug-metabolizing enzymes
8
base supporting
8
pathways elimination
8
drugs
5
pharmacogenetics drug-metabolizing
4
enzymes clinical
4
clinical practice
4
practice application
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!