Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is a transport protein involved in gene-specific mRNA export and protein translation during spermatogenesis.

J Biol Chem

Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA.

Published: November 2006

Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25), a member of the DEAD-box protein family, is essential for completion of spermatogenesis. GRTH is present in the cytoplasm and nucleus of meiotic spermatocytes and round spermatids and functions as a component of mRNP particles, implicating its post-transcriptional regulatory roles in germ cells. In this study, GRTH antibodies specific to N- or C-terminal sequences showed differential subcellular expression of GRTH 56- and 61-kDa species in nucleus and cytoplasm, respectively, of rodent testis and transfected COS1 cells. The 56-kDa nuclear species interacted with CRM1 and participated in mRNA transport. The phosphorylated cytoplasmic 61-kDa species was associated with polyribosomes. Confocal studies on COS-1 cells showed that GRTH-GFP was retained in the nucleus by treatment with a RNA polymerase inhibitor or the nuclear protein export inhibitor. This indicated that GRTH is a shuttling protein associated with RNA export. The N-terminal leucine-rich region (61-74 amino acids) was identified as the nuclear export signal that participated in CRM1-dependent nuclear export pathway. Deletion analysis identified a 14-amino acid GRTH sequence (100-114 amino acids) as a nuclear localization signal. GRTH selectively regulated the translation of specific genes including histone 4 and HMG2 in germ cells. In addition, GRTH participated in the nuclear export of RNA messages (PGK2, tACE, and TP2) in a gene-specific manner. These studies strongly indicate that the mammalian GRTH/Ddx25 gene is a multifunctional RNA helicase that is an essential regulator of sperm maturation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M605086200DOI Listing

Publication Analysis

Top Keywords

rna helicase
12
nuclear export
12
gonadotropin-regulated testicular
8
testicular rna
8
helicase grth/ddx25
8
germ cells
8
61-kda species
8
amino acids
8
grth
7
rna
6

Similar Publications

Neutrophil-to-lymphocyte ratio and short-term mortality in patients having anti-MDA5-positive dermatomyositis with interstitial lung disease: a retrospective study.

BMC Pulm Med

January 2025

Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.

Background: In this study, we aimed to explore the association between baseline and early changes in the neutrophil-to-lymphocyte ratio (NLR) and the 30-day mortality rate in patients having anti-melanoma differentiation-associated gene 5 (MDA5)-positive dermatomyositis with interstitial lung disease (DM-ILD).

Methods: Overall, 263 patients with anti-MDA5 DM-ILD from four centers in China were analyzed. Multivariate logistic regression analysis was used to evaluate the impact of baseline NLR on the 30-day mortality rate in patients with anti-MDA5-positive DM-ILD.

View Article and Find Full Text PDF

DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened.

View Article and Find Full Text PDF

The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.

View Article and Find Full Text PDF

Ubiquitination-dependent degradation of DHX36 mediated by porcine circovirus type 3 capsid protein.

Virology

January 2025

College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. Electronic address:

Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes porcine dermatitis, and reproductive failure. PCV3 Cap interacts with DExD/H-box helicase 36 (DHX36), a protein that functions primarily through regulating interferon (IFN)-β production. However, how the interaction between DHX36 and PCV3 Cap regulates viral replication remains unknown.

View Article and Find Full Text PDF

Identifying Allosteric Small-Molecule Binding Sites of Inactive NS2B-NS3 Proteases of Pathogenic .

Viruses

December 2024

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA.

Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral-host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!