The maltooligosyltrehalose trehalohydrolase (MTHase) mainly cleaves the alpha-1,4-glucosidic linkage next to the alpha-1,1-linked terminal disaccharide of maltooligosyltrehalose to produce trehalose and the maltooligosaccharide with lower molecular mass. In this study, the treZ gene encoding MTHase was PCR-cloned from Sulfolobus solfataricus ATCC 35092 and then expressed in Escherichia coli. A high yield of the active wild-type MTHase, 13300 units/g of wet cells, was obtained in the absence of IPTG induction. Wild-type MTHase was purified sequentially using heat treatment, nucleic acid precipitation, and ion-exchange chromatography. The purified wild-type MTHase showed an apparent optimal pH of 5 and an optimal temperature at 85 degrees C. The enzyme was stable at pH values ranging from 3.5 to 11, and the activity was fully retained after a 2-h incubation at 45-85 degrees C. The k(cat) values of the enzyme for hydrolysis of maltooligosyltrehaloses with degree of polymerization (DP) 4-7 were 193, 1030, 1190, and 1230 s(-1), respectively, whereas the k(cat) values for glucose formation during hydrolysis of DP 4-7 maltooligosaccharides were 5.49, 17.7, 18.2, and 6.01 s(-1), respectively. The K(M) values of the enzyme for hydrolysis of DP 4-7 maltooligosyltrehaloses and those for maltooligosaccharides are similar at the same corresponding DPs. These results suggest that this MTHase could be used to produce trehalose at high temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf061318zDOI Listing

Publication Analysis

Top Keywords

wild-type mthase
12
maltooligosyltrehalose trehalohydrolase
8
sulfolobus solfataricus
8
solfataricus atcc
8
atcc 35092
8
produce trehalose
8
kcat values
8
values enzyme
8
enzyme hydrolysis
8
hydrolysis 4-7
8

Similar Publications

Article Synopsis
  • * Directed evolution was employed to improve the cyclomaltodextrin glucanotransferase (CGTase) enzyme, resulting in mutations that increased its affinity for maltose and overall transglycosylation activity.
  • * The N33K/S211G mutant demonstrated a 32.6% increase in trehalose yield, indicating enhanced performance of the double enzyme method for potential industrial application.
View Article and Find Full Text PDF

Maltooligosyltrehalose trehalohydrolase (MTHase) catalyzes the release of trehalose by cleaving the alpha-1,4-glucosidic linkage next to the alpha-1,1-linked terminal disaccharide of maltooligosyltrehalose. Mutations at residues D255, E286, and D380 were constructed to identify the essential catalytic residues of MTHase, while mutations at residues W218, A259, Y328, F355, and R356 were constructed to identify selectivity-related residues of the enzyme. The specific activities of the purified D255A, E286A, and D380A MTHases were only 0.

View Article and Find Full Text PDF

Maltooligosyltrehalose synthase (MTSase) is one of the key enzymes involved in trehalose production from starch and catalyzes an intramolecular transglycosylation reaction by converting the alpha-1,4- to alpha,alpha-1,1-glucosidic linkage. Mutations at residues F206, F207, and F405 were constructed to change the selectivity of the enzyme because the changes in selectivity could reduce the side hydrolysis reaction of releasing glucose and thus increase trehalose production from starch. As compared with wild-type MTSase, F405Y and F405M MTSases had decreased ratios of the initial rate of glucose formation to that of trehalose formation in starch digestion at 75 degrees C when wild-type and mutant MTSases were, respectively, used with isoamylase and maltooligosyltrehalose trehalohydrolase (MTHase).

View Article and Find Full Text PDF

The maltooligosyltrehalose trehalohydrolase (MTHase) mainly cleaves the alpha-1,4-glucosidic linkage next to the alpha-1,1-linked terminal disaccharide of maltooligosyltrehalose to produce trehalose and the maltooligosaccharide with lower molecular mass. In this study, the treZ gene encoding MTHase was PCR-cloned from Sulfolobus solfataricus ATCC 35092 and then expressed in Escherichia coli. A high yield of the active wild-type MTHase, 13300 units/g of wet cells, was obtained in the absence of IPTG induction.

View Article and Find Full Text PDF

The role of a gene cluster for trehalose metabolism in dehydration tolerance of the filamentous cyanobacterium Anabaena sp. PCC 7120.

Microbiology (Reading)

April 2006

Department of Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-Ohkubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan.

Expression of the genes for trehalose synthesis (mts and mth, encoding maltooligosyl trehalose synthase and hydrolase) and trehalose hydrolysis (treH) in Anabaena sp. PCC 7120 was up-regulated markedly upon dehydration. However, the amount of trehalose accumulated during dehydration was small, whereas a large amount of sucrose was accumulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!