Automated formation of lipid-bilayer membranes in a microfluidic device.

Nano Lett

Department of Bioengineering, Cybernetics Interdepartmental Program, and California Nanosystems Institute, University of California Los Angeles, Los Angeles, California 90095, USA.

Published: September 2006

Although membrane channel proteins are important to drug discovery and hold great promise as engineered nanopore sensing elements, their widespread application to these areas has been limited by difficulties in fabricating planar lipid-bilayer membranes. We present a method for forming these sub-5-nm-thick free-standing structures based on a self-assembly process driven by solvent extraction in a microfluidic channel. This facile automatable process forms high-quality membranes able to host channel proteins measurable at single-molecule conductance resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl0611034DOI Listing

Publication Analysis

Top Keywords

lipid-bilayer membranes
8
channel proteins
8
automated formation
4
formation lipid-bilayer
4
membranes microfluidic
4
microfluidic device
4
device membrane
4
membrane channel
4
proteins drug
4
drug discovery
4

Similar Publications

Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.

View Article and Find Full Text PDF

SARS-CoV-2 viral entry requires membrane fusion, which is facilitated by the fusion peptides within its spike protein. These predominantly hydrophobic peptides insert into target membranes; however, their precise mechanistic role in membrane fusion remains incompletely understood. Here, we investigate how FP1 (SFIEDLLFNKVTLADAGFIK), the N-terminal fusion peptide, modulates membrane stability and barrier function across various model membrane systems.

View Article and Find Full Text PDF

Effect of Essential Oil on Model Lipid Membranes.

Biomolecules

December 2024

Drug Chemistry and Technology Department, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.

essential oil is a natural substance able to inhibit the growth of several pathogens. This antimicrobial effect is often attributed to its ability to penetrate cellular structures and disrupt them. Although these properties are recognized as playing a key role in the mechanism of action of this substance, many unresolved issues still exist, and fundamental studies focused on such aspects are scarce.

View Article and Find Full Text PDF

Comparative Structural and Biophysical Investigation of Toxin I (LyeTx I) and Its Analog LyeTx I-b.

Antibiotics (Basel)

January 2025

Departamento de Química, Faculdade de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK, Diamantina 39100-000, MG, Brazil.

This study investigates the structural and biophysical properties of the wild-type antimicrobial peptide LyeTx I, isolated from the venom of the spider , and its analog LyeTx I-b, designed to enhance antibacterial activity, selectivity, and membrane interactions by the acetylation and increased amphipathicty. : To understand the mechanisms behind these enhanced properties, comparative analyses of the structural, topological, biophysical, and thermodynamic aspects of the interactions between each peptide and phospholipid bilayers were evaluated. Both peptides were isotopically labeled with H-Ala and N-Leu to facilitate structural studies via NMR spectroscopy.

View Article and Find Full Text PDF

The Possible Crystallization Process in the Origin of Bacteria, Archaea, Viruses, and Mobile Elements.

Biology (Basel)

December 2024

Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.

We propose a hypothesis for the simultaneous emergence of bacteria, archaea, viruses, and mobile elements by sequential and concrete biochemical pathways. The emergence process can be considered analogous to crystallization, where genetic and biochemical systems stabilize as organisms evolve from their common ancestor, the LUCA, which was a non-free-living pool of single operon type genomes including double-stranded (ds) DNA at an ancient submarine alkaline vent. Each dsDNA operon was transcribed by different systems in σ, TFIIB, or TBP genomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!