AI Article Synopsis

Article Abstract

Calix[4]arenes functionalized at the 1,2-, 1,3-, and 1,2,3-positions of the upper rim with [12]ane-N(3) ligating units were synthesized, and their bi- and trimetallic zinc(II) and copper(II) complexes were investigated as catalysts in the cleavage of phosphodiesters as RNA models. The results of comparative kinetic studies using monometallic controls indicate that the subunits of all of the zinc(II) complexes and of the 1,3-distal bimetallic copper(II) complex 7-Cu(2) act as essentially independent monometallic catalysts. The lack of cooperation between metal ions in the above complexes is in marked contrast with the behavior of the 1,2-vicinal bimetallic copper(II) complex 6-Cu(2), which exhibits high catalytic efficiency and high levels of cooperation between metal ions in the cleavage of HPNP and of diribonucleoside monophosphates NpN'. A third ligated metal ion at the upper rim does not enhance the catalytic efficiency, which excludes the simultaneous cooperation in the catalysis of the three metal ions in 8-Cu(3). Rate accelerations relative to the background brought about by 6-Cu(2) and 8-Cu(3) (1.0 mM catalyst, water solution, pH 7.0, 50 degrees C) are on the order of 10(4)-fold, largely independent of the nucleobase structure, with the exception of the cleavage of diribonucleoside monophosphates in which the nucleobase N is uracil, namely UpU and UpG, for which rate enhancements rise to 10(5)-fold. The rationale for the observed selectivity is discussed in terms of deprotonation of the uracil moiety under the reaction conditions and complexation of the resulting anion with one of the copper(II) centers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0632106DOI Listing

Publication Analysis

Top Keywords

metal ions
12
copperii complexes
8
upper rim
8
bimetallic copperii
8
copperii complex
8
cooperation metal
8
catalytic efficiency
8
diribonucleoside monophosphates
8
copperii
5
catalysis diribonucleoside
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!