Antidiuretic hormone (ADH) stimulation of toad urinary bladder granular cells causes simultaneous increases in transepithelial water and H+ permeabilities (PF and PH+, respectively), suggesting that ADH-elicited water channels inserted into granular cell apical membranes might be permeable to both water and H+. We have previously used self-quenching fluorophores entrapped within endocytic vesicles selectively retrieved from water-permeable apical membranes to measure vesicle PF. The membranes of these vesicles possess an extremely high PF such that our measurements provide only minimum estimates of vesicle PF and have limited our ability to quantitate the properties of ADH water channels. We therefore quantitated vesicle PH+ using similar rapid mixing techniques. Vesicle PH+ was 5.1 +/- 0.5 x 10(-3) cm/s. Activation energy of this process was 3.6 +/- 0.6 kcal/mol, indicative of H+ flux through an aqueous channel. The mercurial reagent, para-chloromercuribenzenesulfonate (PCMBS), which inhibits ADH-stimulated transepithelial PF in intact bladders by 50-60%, inhibited vesicle PH+ by 55%. N-Ethylmaleimide and phloretin, which do not alter ADH-stimulated PF, did not affect vesicle PH+. We conclude that membranes containing ADH water channels possess substantial PH+ that likely reflects proton flux through water channels. The apparent high PH+ of the ADH water channel may have important implications for intracellular trafficking of these water channels in ADH-responsive epithelial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajprenal.1990.259.2.F366 | DOI Listing |
Sci Rep
January 2025
Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan.
Anthropogenic activities such as industrial pollution of water bodies possess threat to floras leading to extinction and endangerment. This study investigates the impact of industrial pollution on vegetation along River Chenab and its associated drains. Rivers and channels transporting industrial effluents have been determined to be significantly contaminated.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Nature Conservation, Polish Academy of Sciences, al. Adama Mickiewicza 33, 31- 120, Kraków, Poland.
Identifying macroplastic deposition hotspots in rivers is essential for planning cleanup efforts and assessing the risks to aquatic life and the aesthetic value of river landscapes. Recent fieldwork in mountain rivers has shown that wood jams retain significantly more macroplastic than other emergent surfaces within river channels. Here, we experimentally verify these findings by tracking the deposition of 64 PET bottles after 52-65 days of transport in the mid-mountain Skawa River (Polish Carpathians) under low to medium flow conditions.
View Article and Find Full Text PDFKidney360
January 2025
Lund University, Skåne University Hospital, Clinical Sciences Lund, Department of Nephrology, Lund, Sweden.
Background: Water retention, ultrafiltration insufficiency, and metabolic complications due to abnormally high glucose concentrations are still common problems in patients treated with peritoneal dialysis. Phloretin, a nonselective inhibitor of facilitative glucose transporter channels (GLUT), has shown to improve water transport and lower glucose absorption in experimental peritoneal dialysis. However, the dose-response relationship remains unknown, and we therefore performed a dose-response study to elucidate the pharmacodynamic properties of intra-peritoneal phloretin therapy.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China. Electronic address:
Superhydrophilic hydrogel was typically used as the membrane coating on various substrates for oil/water separation. Nevertheless, these coatings may suffer from such limitations as poor adhesion strength and abrasion-resistance. Thus, the facile construction of hydrogel sponge with 3D connecting channels would be an ideal choice.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China. Electronic address:
High-performance solar interface evaporators provide a promising, sustainable, and cost-effective solution to the global freshwater crisis through seawater purification. However, achieving a delicate balance between maximizing the evaporation rate and ensuring continuous, stable, and durable operation presents a critical challenge. Herein, we present a biomimetic cellulose/polypyrrole-coated silica/graphene evaporator with self-assembled nanofiber networks and vertically aligned vessels for enhanced salt resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!