Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Muscle denervation and concomitant high-dose dexamethasone treatment in rodents produces characteristic pathologic features of severe muscle atrophy and selective myosin heavy filament (MyHC) depletion, identical to those seen in acute quadriplegic myopathy (AQM), also known as critical illness myopathy. We tested the hypothesis that defective pre-translational processes contribute to the atrophy and selective MyHC depletion in this model. We examined the effects of combined glucocorticoid-denervation treatment on MyHC and actin mRNA populations; we also studied mRNA expression of the myogenic regulatory factors (MRFs), primary transcription factors for MyHC. Adult female rats were subjected to proximal sciatic denervation followed by high-dose dexamethasone (DD) treatment (5 mg/kg body weight daily) for 7 days. Disease controls included rats treated with denervation alone (DN) or dexamethasone alone (DX). At 1 week the plantaris atrophied by approximately 42% in DD muscles. DD treatment resulted in selective MyHC protein depletion; actin protein concentration was not significantly changed. Despite an increase in total RNA concentration in DN and DD muscles, MyHC and actin mRNA concentrations were significantly decreased in these muscles. MyHC mRNA showed a significantly more extensive depletion relative to actin mRNA in DD muscles. Glucocorticoid treatment did not influence a denervation-induced increase in the mRNA expression of the MRFs. We conclude that a deleterious interaction between glucocorticoid and denervation treatments in skeletal muscle is responsible for pre-translational defects that reduce actin and MyHC mRNA substrates in a disproportionate fashion. The resultant selective MyHC depletion contributes to the severe muscle atrophy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mus.20647 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!