A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular and cellular defects of skeletal muscle in an animal model of acute quadriplegic myopathy. | LitMetric

Molecular and cellular defects of skeletal muscle in an animal model of acute quadriplegic myopathy.

Muscle Nerve

Department of Neurology, University of California, Irvine, 101 City Drive South, Building 22C, Route 13, Orange, California 92868, USA.

Published: January 2007

Muscle denervation and concomitant high-dose dexamethasone treatment in rodents produces characteristic pathologic features of severe muscle atrophy and selective myosin heavy filament (MyHC) depletion, identical to those seen in acute quadriplegic myopathy (AQM), also known as critical illness myopathy. We tested the hypothesis that defective pre-translational processes contribute to the atrophy and selective MyHC depletion in this model. We examined the effects of combined glucocorticoid-denervation treatment on MyHC and actin mRNA populations; we also studied mRNA expression of the myogenic regulatory factors (MRFs), primary transcription factors for MyHC. Adult female rats were subjected to proximal sciatic denervation followed by high-dose dexamethasone (DD) treatment (5 mg/kg body weight daily) for 7 days. Disease controls included rats treated with denervation alone (DN) or dexamethasone alone (DX). At 1 week the plantaris atrophied by approximately 42% in DD muscles. DD treatment resulted in selective MyHC protein depletion; actin protein concentration was not significantly changed. Despite an increase in total RNA concentration in DN and DD muscles, MyHC and actin mRNA concentrations were significantly decreased in these muscles. MyHC mRNA showed a significantly more extensive depletion relative to actin mRNA in DD muscles. Glucocorticoid treatment did not influence a denervation-induced increase in the mRNA expression of the MRFs. We conclude that a deleterious interaction between glucocorticoid and denervation treatments in skeletal muscle is responsible for pre-translational defects that reduce actin and MyHC mRNA substrates in a disproportionate fashion. The resultant selective MyHC depletion contributes to the severe muscle atrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mus.20647DOI Listing

Publication Analysis

Top Keywords

myhc depletion
12
selective myhc
12
actin mrna
12
myhc
9
skeletal muscle
8
acute quadriplegic
8
quadriplegic myopathy
8
high-dose dexamethasone
8
dexamethasone treatment
8
severe muscle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!