The somite and its intermediate derivatives, sclerotome and dermomyotome (DM), are composed of distinct subdomains based on lineage analysis and gene expression patterns. This sets the grounds for elucidating the mechanisms underlying differential cell specification and morphogenesis. By examining the in vivo roles of N-cadherin on discrete domains of the somitic epithelium at various times, our recent studies highlight the existence of a regional and temporal heterogeneity in cellular responsiveness. As examples of this assortment, we document a coupling between asymmetric cell division and fate segregation in the DM sheet, sequential effects of N-cadherin-mediated adhesion on early myogenic specification compared to later myofiber patterning, and a differential behavior of pioneer myoblasts compared to later myogenic waves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00429-006-0116-y | DOI Listing |
Nat Microbiol
January 2025
Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
The evolution of eukaryotes is a fundamental event in the history of life. The closest prokaryotic lineage to eukaryotes, the Asgardarchaeota, encode proteins previously found only in eukaryotes, providing insight into their archaeal ancestor. Eukaryotic cells are characterized by endomembrane organelles, and the Arf family GTPases regulate organelle dynamics by recruiting effector proteins to membranes upon activation.
View Article and Find Full Text PDFCell
January 2025
Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:
A meta-genome-wide association study across eight psychiatric disorders has highlighted the genetic architecture of pleiotropy in major psychiatric disorders. However, mechanisms underlying pleiotropic effects of the associated variants remain to be explored. We conducted a massively parallel reporter assay to decode the regulatory logic of variants with pleiotropic and disorder-specific effects.
View Article and Find Full Text PDFMol Biol Evol
January 2025
Center for Genomics and Systems Biology, Department of Biology, New York University.
Copy-number variants (CNVs) are an important class of genetic variation that can mediate rapid adaptive evolution. Whereas CNVs can increase the relative fitness of the organism, they can also incur a cost due to the associated increased gene expression and repetitive DNA. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus.
View Article and Find Full Text PDFProteins
January 2025
Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA.
Starch accumulation in plants provides carbon for nighttime use, for regrowth after periods of dormancy, and for times of stress. Both ɑ- and β-amylases (AMYs and BAMs, respectively) catalyze starch hydrolysis, but their functional roles are unclear. Moreover, the presence of catalytically inactive amylases that show starch excess phenotypes when deleted presents questions on how starch degradation is regulated.
View Article and Find Full Text PDFZool Res
January 2025
Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China. E-mail:
Avian genomes exhibit compact organization and remarkable chromosomal stability. However, the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorly explored. This study generated a diploid genome assembly for the golden pheasant ( ), a species distinguished by the vibrant plumage of males.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!