Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Severe closed soft-tissue injury (CSTI) results in progressively developing microvascular dysfunction and local inflammation. Cooling reduces swelling, pain, cellular oxygen demand, and metabolic activity. However, effects of cooling on posttraumatic microcirculation are not yet fully understood. Thus, we assessed effects of local cooling on microcirculation, regional inflammatory response including leukocyte-endothelial cell interaction, and edema formation after CSTI.
Methods: Standardized CSTI was induced by means of controlled impact injury in the left tibial compartment of 14 male Sprague-Dawley rats. Rats were assigned to four groups (n = 7 per group) as follows: group I, no trauma/no cooling; group II, no trauma/20 minutes of cooling; group III, 1.5 hours posttrauma/no cooling; and group IV, 1.5 hours posttrauma/20 minutes of cooling.
Results: CSTI resulted in a significant decrease in functional capillary density, a marked increase in microvascular permeability, and granulocyte infiltration (HIS48) as revealed by intravital microscopy and immunohistochemistry of the left extensor digitorum longus muscle. After 20 minutes of local cooling, these microvascular derangements were restored to the level of controls (group I). Edema (extensor digitorum longus muscle wet-to-dry weight ratio) was less pronounced compared with noncooling conditions (group III). Immunoreactivity for HIS48 (neutrophilic granulocytes) in injured rats subjected to local cooling (group IV) was markedly decreased compared with noncooling conditions (group III).
Conclusion: These results provide in vivo evidence that cooling affords protection of posttraumatic microcirculation through sustained inhibition of microvascular and endothelial dysfunction leading to less granulocyte-dependent inflammation and skeletal muscle edema. Local cooling appears to reduce propagation of acute microvascular injury, preventing leukocyte-dependent tissue destruction and escalation of secondary tissue damage after musculoskeletal soft-tissue trauma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.ta.0000174922.08781.2f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!