Background: High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor functions in those with Parkinson disease but may worsen frontal functions such as verbal fluency (VF). In contrast, low-frequency DBS leads to deterioration of motor functions. It is not known whether low-frequency STN DBS also has an effect on frontal functions.
Objective: To examine whether low-frequency STN DBS in contrast to high-frequency STN DBS has a positive effect on frontal functions on the basis of VF test results.
Design: A double-blind randomized crossover experiment to compare performance in 4 VF subtests and motor performance at 10 Hz, 130 Hz, and no stimulation.
Setting: University hospitals in Düsseldorf and Cologne, Germany.
Patients: Twelve patients with Parkinson disease 3 months or more after bilateral electrode implantation into the STN.
Main Outcome Measure: Mean number of words in VF at different stimulation frequencies.
Results: The VF was significantly better at 10 Hz (48.3 words) compared with 130 Hz and showed a nonsignificant trend toward worsening at 130 Hz (42.3 words) compared with no stimulation (43.8 words). These results were consistent across all subtests.
Conclusions: The study provides evidence of a beneficial effect of low-frequency (10 Hz) STN DBS on VF, which may be caused by activating neural pathways projecting to the frontal cortex. In addition, the study reproduces the negative effect of therapeutic high-frequency STN DBS on VF. The study results provide evidence for a frequency-dependent modulation of cognitive circuits involving the STN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/archneur.63.9.1273 | DOI Listing |
Oper Neurosurg (Hagerstown)
September 2024
Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA.
Background And Objectives: Surgical planning is critical to achieve optimal outcome in deep brain stimulation (DBS). The relationship between clinical outcomes and DBS electrode position relative to subthalamic nucleus (STN) is well investigated, but the role of surgical trajectory remains unclear. We sought to determine whether preoperatively planned DBS lead trajectory relates to adequate motor outcome in STN-DBS for Parkinson's disease (PD).
View Article and Find Full Text PDFSleep
January 2025
Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO USA.
Study Objectives: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) may improve sleep dysfunction, a common non-motor symptom of Parkinson disease (PD). Improvement in motor symptoms correlates with DBS-suppressed local field potential (LFP) activity, particularly in the beta frequency (13 - 30 Hz). Although well-characterized in the short term, little is known about the innate progression of these oscillations across the sleep-wake cycle.
View Article and Find Full Text PDFJ Neurosci
January 2025
Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Germany
Recordings from Parkinson's disease (PD) patients typically show strong beta-band oscillations (13-35Hz), which can be modulated by deep brain stimulation (DBS). While high-frequency DBS (>100Hz) ameliorates motor symptoms and reduces beta activity in basal ganglia and motor cortex, the effects of low-frequency DBS (<30Hz) are less clear. Clarifying these effects is relevant for the debate about the role of beta oscillations in motor slowing, which might be causal or epiphenomenal.
View Article and Find Full Text PDFBrain Stimul
January 2025
Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy. Electronic address:
J Neurol
January 2025
Department of Neurology and Institute of Neurology, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
Background: Bilateral deep brain stimulation (DBS) of subthalamic nucleus (STN) has demonstrated efficacy for ameliorating medication-refractory isolated dystonia. Nonetheless, the paucity of evidence regarding its long-term impact on quality-of-life (QoL) necessitates further investigation.
Objectives: This study aimed to elucidate the longitudinal effects of chronic STN stimulation on QoL in patients suffering from isolated dystonia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!