A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural snapshots of Escherichia coli histidinol phosphate phosphatase along the reaction pathway. | LitMetric

HisB from Escherichia coli is a bifunctional enzyme catalyzing the sixth and eighth steps of l-histidine biosynthesis. The N-terminal domain (HisB-N) possesses histidinol phosphate phosphatase activity, and its crystal structure shows a single domain with fold similarity to the haloacid dehalogenase (HAD) enzyme family. HisB-N forms dimers in the crystal and in solution. The structure shows the presence of a structural Zn(2+) ion stabilizing the conformation of an extended loop. Two metal binding sites were also identified in the active site. Their presence was further confirmed by isothermal titration calorimetry. HisB-N is active in the presence of Mg(2+), Mn(2+), Co(2+), or Zn(2+), but Ca(2+) has an inhibitory effect. We have determined structures of several intermediate states corresponding to snapshots along the reaction pathway, including that of the phosphoaspartate intermediate. A catalytic mechanism, different from that described for other HAD enzymes, is proposed requiring the presence of the second metal ion not found in the active sites of previously characterized HAD enzymes, to complete the second half-reaction. The proposed mechanism is reminiscent of two-Mg(2+) ion catalysis utilized by DNA and RNA polymerases and many nucleases. The structure also provides an explanation for the inhibitory effect of Ca(2+).

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M604916200DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
histidinol phosphate
8
phosphate phosphatase
8
reaction pathway
8
structural snapshots
4
snapshots escherichia
4
coli histidinol
4
phosphatase reaction
4
pathway hisb
4
hisb escherichia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!