A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Contrast-enhanced MR 3D angiography in the assessment of brain AVMs. | LitMetric

Background And Purpose: Digital subtraction angiography (DSA) is the current reference standard for the diagnosis, assessment, and management of brain arteriovenous malformations (AVMs). The purpose of this study was to compare the diagnostic utility of three-dimensional (3D) time-of-flight (TOF) magnetic resonance angiography (MRA) and contrast-enhanced 3D MRA in patients with intracranial arteriovenous malformations (AVMs) in different sizes and locations. The AVM diagnosis was proved via DSA and almost half of the patients had also hematoma.

Materials And Methods: Two radiologists, experienced on neurovascular imaging and independent from each other, retrospectively reviewed two MRA techniques and DSA with regard to the assessment of feeding arteries, AVM nidus, and venous drainage patterns on 20 patients with 23 examinations by scoring system. Disagreements were resolved by consensus.

Results: An excellent agreement between contrast-enhanced MRA and DSA was found in order to assess the numbers of arterial feeders and draining veins (Spearman r=0.913, P<0.001). The average scores in contrast-enhanced MRA for feeders, nidi, and drainers were respectively 2.26, 2.69, and 2.48, while in TOF-MRA they are 1.96, 1.35, and 0.89, respectively.

Conclusion: Compared to TOF-MRA, 3D contrast-enhanced MRA is useful for visualization by subtraction technique of malformation components presented by hematoma or by haem product. On the other hand, for the cases presented by slow or complex flow that is especially in around or nidi or around the venous portion is also advantageous because of the independence from flow-related enhancement. Therapeutic effects were clearly demonstrated in three follow-up patients. A major limitation of this technique is the low spatial resolution. Since there is such a limitation, arterial feeder of a case with micro-AVM is not detected by contrast-enhanced MRA and nidus for the same case was observed retrospectively. In this respect, we believe that 3D contrast-enhanced MRA is a less invasive and inexpensive angiographic tool, but not a safe substitute for DSA. Yet, it can be a beneficial supplement to DSA in patients with cerebral AVMs at both initial diagnosis and at follow-up processes after therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2006.08.007DOI Listing

Publication Analysis

Top Keywords

arteriovenous malformations
8
malformations avms
8
contrast-enhanced mra
8
contrast-enhanced angiography
4
angiography assessment
4
assessment brain
4
brain avms
4
avms background
4
background purpose
4
purpose digital
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!