Reticulons RTN3 and RTN4-B/C interact with BACE1 and inhibit its ability to produce amyloid beta-protein.

Eur J Neurosci

Department of Demyelinating Disease and Ageing, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.

Published: September 2006

Beta-secretase beta-site APP cleaving enzyme 1 (BACE1), is a membrane-bound aspartyl protease necessary for the generation of amyloid beta-protein (Abeta), which accumulates in the brains of individuals with Alzheimer's disease (AD). To gain insight into the mechanisms by which BACE1 activity is regulated, we used proteomic methods to search for BACE1-interacting proteins in human neuroblastoma SH-SY5Y cells, which overexpress BACE1. We identified reticulon 4-B (RTN4-B; Nogo-B) as a BACE1-associated membrane protein. Co-immunoprecipitation experiments confirmed a physical association between BACE1 and RTN4-B, RTN4-C (the shortest isoform of RTN-4), and their homologue reticulon 3 (RTN3), both in SH-SY5Y cells and in transfected human embryonic kidney (HEK) 293 cells. Overexpression of these reticulons (RTNs) resulted in a 30-50% reduction in the secretion of both Abeta40 and Abeta42 from HEK293 cells expressing the AD-associated Swedish mutant amyloid precursor protein (APP), but did not affect Abeta secretion from cells expressing the APP beta-C-terminal fragment (beta-CTF), indicating that these RTNs can inhibit BACE1 activity. Furthermore, a BACE1 mutant lacking most of the N-terminal ectodomain also interacted with these RTNs, suggesting that the transmembrane region of BACE1 is critical for the interaction. We also observed a similar interaction between these RTNs and the BACE1 homologue BACE2. Because RTN3 and RTN4-B/C are substantially expressed in neural tissues, our findings suggest that they play important roles in the regulation of BACE1 function and Abeta production in the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2006.05005.xDOI Listing

Publication Analysis

Top Keywords

bace1
10
rtn3 rtn4-b/c
8
amyloid beta-protein
8
bace1 activity
8
sh-sy5y cells
8
cells expressing
8
cells
5
reticulons rtn3
4
rtn4-b/c interact
4
interact bace1
4

Similar Publications

Background: Alzheimer's disease (AD) is an irreversible age-related neurodegenerative condition characterized by the deposition of amyloid-β (Aβ) peptides and neurofibrillary tangles. Di Huang Yi Zhi (DHYZ) formula, a traditional Chinese herbal compound comprising several prescriptions, demonstrates properties that improve cognitive abilities in clinical. Nonetheless, its molecular mechanisms on treating AD through improving neuron cells mitochondria function have not been deeply investigated.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common type of dementia. Its incidence is rising rapidly as the global population ages, leading to a significant social and economic burden. AD involves complex pathologies, including amyloid plaque accumulation, synaptic dysfunction, and neuroinflammation.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive function, for which few effective treatments exist. This study investigated the neuroprotective potential of root extract and its key constituents (baicalein, chrysin, oroxylin A) against AD hallmarks. The extract and its constituents exhibited antioxidant activity in the DPPH assay.

View Article and Find Full Text PDF

A notion of the continuous production of amyloid-β (Aβ) via the proteolysis of Aβ-protein-precursor (AβPP) in Alzheimer's disease (AD)-affected neurons constitutes both a cornerstone and an article of faith in the Alzheimer's research field. The present Perspective challenges this assumption. It analyses the relevant empirical data and reaches an unexpected conclusion, namely that in AD-afflicted neurons, the production of AβPP-derived Aβ is either discontinued or severely suppressed, a concept that, if proven, would fundamentally change our understanding of the disease.

View Article and Find Full Text PDF

Alzheimer's disease, a progressively degenerative neurological disorder, is the most common cause of dementia in the elderly. While its precise etiology remains unclear, researchers have identified diverse pathological characteristics and molecular pathways associated with its progression. Advances in scientific research have increasingly highlighted the crucial role of non-coding RNAs in the progression of Alzheimer's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!