Polymer size in dilute solutions in the good-solvent regime.

J Chem Phys

Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy.

Published: September 2006

We determine the density expansion of the radius of gyration, of the hydrodynamic radius, and of the end-to-end distance for a monodisperse polymer solution in good-solvent conditions. We consider the scaling limit (large degree of polymerization), including the leading scaling corrections. Using the expected large-concentration behavior, we extrapolate these low-density expansions outside the dilute regime, obtaining a prediction for the radii for any concentration in the semidilute region. For the radius of gyration, comparison with field-theoretical predictions shows that the relative error should be at most 5% in the limit of very large polymer concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2339015DOI Listing

Publication Analysis

Top Keywords

radius gyration
8
limit large
8
polymer size
4
size dilute
4
dilute solutions
4
solutions good-solvent
4
good-solvent regime
4
regime determine
4
determine density
4
density expansion
4

Similar Publications

Revealing an origin of temperature-dependent structural change in intrinsically disordered protein.

Biophys J

December 2024

Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494 Japan. Electronic address:

Intrinsically disordered proteins (IDPs) show structural changes stimulated by changes in external conditions. This study aims to reveal the temperature dependence of the structure and dynamics of the intrinsically disordered region of Hef, one of the typical IDPs, using an integrative approach. Small-angle X-ray scattering (SAXS) and circular dichroism (CD) studies revealed that the radius of gyration and ellipticity at 222 nm remained constant up to 313-323 K, followed by a decline above this temperature range.

View Article and Find Full Text PDF

The effects of guanidinium hydrochloride (GdmCl) on two intrinsically disordered proteins (IDPs) are investigated using simulations of the self-organized polymer-IDP (SOP-IDP) model. The impact of GdmCl is taken into account using the molecular transfer model (MTM). We show that due to the dramatic reduction in the stiffness of the highly charged Prothymosin-α (ProTα) with increasing concentration of GdmCl ([GdmCl]), the radius of gyration () decreases sharply until about 1.

View Article and Find Full Text PDF

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge due to the emergence of drug-resistant strains. This study targets Flavin-dependent thymidylate synthase (ThyX), an essential enzyme in the thymidylate biosynthesis pathway crucial for bacterial DNA replication. We utilized advanced computational techniques, including molecular dynamics (MD) simulations and interaction energy analysis, to examine the binding interactions and stability of various thiazole-thiadiazole compounds with Mtb ThyX.

View Article and Find Full Text PDF

Background: Plant formulations with antidiabetic and antioxidant properties have recently gained popularity due to their lower cost and lesser side effects. Guggul gum is one such formulation that is extensively being used to cure various ailments.

Objective: The present study was designed to explore the antioxidant and antidiabetic properties of the aqua-ethanolic Guggul gum extract (GE) from Commiphora wightii using in silico studies and in vitro assays.

View Article and Find Full Text PDF

silk fibroin is a promising biopolymer with notable mechanical strength, biocompatibility, and potential for diverse biomedical applications, such as tissue engineering scaffolds, and drug delivery. These properties are intrinsically linked to the structural characteristics of silk fibroin, making it essential to understand its molecular stability under varying environmental conditions. This study employed molecular dynamics simulations to examine the structural stability of silk I and silk II conformations of silk fibroin under changes in temperature (298 K to 378 K) and pressure (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!