The adsorption of polymers, copolymers, surfactants, and biopolymers is often used to engineer surfaces. Towards improving our understanding of polymer adsorption we report simulation results for the adsorption of model copolymers, resembling surfactants, on nanoscale patterned hydrophobic surfaces at infinitely dilute concentrations. The surfactants are composed by a hydrophobic tail and a hydrophilic head. Surfactant adsorption on the hydrophobic surface occurs in the tail-down configuration in which the tail segments are in contact with the surface. We investigate how the presence of a solid hard mask, used to create the nanoscale pattern on the underlying hydrophobic surface, affects the surfactant adsorption. We find that surfactant adsorption on the underlying hydrophobic surface is prevented when the characteristic dimensions of the solid hard mask are less than twice the radius of gyration. We also show that details about mask-surfactant head effective interactions have the potential to alter the characteristics of adsorption. When the mask repels the head segments, the surfactants hardly adsorb on the underlying hydrophobic surface. When the mask strongly attracts the surfactant heads, the surfactants may preferentially adsorb on the mask rather than on the underlying hydrophobic surface. Under these latter circumstances the adsorbed surfactants in some cases assume a head-down configuration in which the head segments are in contact with the mask and the tail segments extend towards the bulk solution. We explain our results in terms of enthalpy and entropy of adsorption and discuss practical implications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2346676 | DOI Listing |
Beilstein J Nanotechnol
January 2025
Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark.
Scaling of steel surfaces, prevalent in various industrial applications, results in significant operational inefficiencies and maintenance costs. Inspired by the natural hydrophobicity of springtail (Collembola) skin, which employs micro- and nanostructures to repel water, we investigate the application of silicone nanofilaments (SNFs) as a coating on steel surfaces to mitigate scaling. Silicone nanofilaments, previously successful on polymers, textiles, and glass, are explored for their hydrophobic properties and stability on steel.
View Article and Find Full Text PDFFood Chem X
January 2025
Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
This study reports a comparative evaluation of the physicochemical and functional properties of fava bean albumin, globulin and glutelin proteins. The fava bean globulins had significantly ( < 0.05) higher protein content (88.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical Engineering, Tohoku University, Sendai, Miyagi 9808579, Japan.
Aqueous antibacterial colloids are potential agents that kill bacteria via physical contact. Conventionally, antibacterial agents are designed to be small, cationic, or hydrophobic. However, hydrophobic materials easily aggregate in aqueous media, drastically inhibiting their activity.
View Article and Find Full Text PDFLangmuir
January 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
The antifreeze mechanism of antifreeze glycoproteins (AFGPs) remains incompletely understood, which limits the design of new antifreeze molecules for practical applications. For instance, the ice growth inhibition of AFGP8 (the shortest AFGPs) is primarily driven by hydrophobic methyl and hydrogen-bonding hydroxyl groups. However, altering the C3-β linkage in the disaccharide moiety of AFGP8, denoted as variant GP8-LacNAc, significantly reduces its antifreeze activity.
View Article and Find Full Text PDFJ Control Release
January 2025
State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
Selenium deficiency associated with a high risk of many diseases remains a global challenge. Owing to the narrow margin between "nutrition-toxicity" doses of selenium, it is imperative to achieve accurate selenium supplement. Nano‑selenium (SeNPs) is a novel form of selenium supplement with low toxicity, but it could be trapped and removed by intestinal mucus, thus limiting its oral delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!