Friction laws for lubricated nanocontacts.

J Chem Phys

CNR-INFM Genova, Dipartimento di Fisica, Via Dodecaneso 33, 16146 Genova, Italy.

Published: September 2006

We have used friction force microscopy to probe friction laws for nanoasperities sliding on atomically flat substrates under controlled atmosphere and liquid environment, respectively. A power law relates friction force and normal load in dry air, whereas a linear relationship, i.e., Amontons' law, is observed for junctions fully immersed in model lubricants, namely, octamethylciclotetrasiloxane and squalane. Lubricated contacts display a remarkable friction reduction, with liquid and substrate specific friction coefficients. Comparison with molecular dynamics simulations suggests that load-bearing boundary layers at junction entrance cause the appearance of Amontons' law and impart atomic-scale character to the sliding process; continuum friction models are on the contrary of limited predictive power when applied to lubrication effects. An attempt is done to define general working conditions leading to the manifestation of nanoscale lubricity due to adsorbed boundary layers.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2345369DOI Listing

Publication Analysis

Top Keywords

friction laws
8
friction force
8
amontons' law
8
boundary layers
8
friction
7
laws lubricated
4
lubricated nanocontacts
4
nanocontacts friction
4
force microscopy
4
microscopy probe
4

Similar Publications

The complex mechanical characteristics of calcareous sand complicate comprehensive analysis of the bearing characteristics of pressure grouting piles. The bearing mechanism of pressure grouting piles is unclear. Field tests of the bearing characteristics of pressure grouting piles in calcareous sand foundations were carried out.

View Article and Find Full Text PDF

The impact of colloid-solvent dynamic coupling on the coarsening rate of colloidal phase separation.

J Colloid Interface Sci

April 2025

Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8904, Tokyo, Japan; Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505, Tokyo, Japan. Electronic address:

Phase separation, a fundamental phenomenon in both natural and industrial settings, involves the coarsening of domains over time t to reduce interfacial energy. While well-understood for simple viscous liquid mixtures, the physical laws governing coarsening dynamics in complex fluids, such as colloidal suspensions, remain unclear. Here, we investigate colloidal phase separation through particle-based simulations with and without hydrodynamic interactions (HIs).

View Article and Find Full Text PDF

Nanofriction plays an important role in the performance and lifetime of n-type or p-type TMD-based semiconductor nanodevices. However, the mechanism of nanofriction in n-type and p-type TMD semiconductors under an electric field is still blurry. In this paper, monolayers of n-MoSe and p-WSe materials were prepared by chemical vapor deposition (CVD), and their nanofriction behavior under positive electric field was investigated.

View Article and Find Full Text PDF

To achieve high-performance trajectory tracking for a manipulator, this study proposes a novel sliding mode control strategy incorporating a nonlinear disturbance observer. The observer is designed to estimate unknown models in real-time, enabling feedforward compensation for various uncertainties such as modeling errors, joint friction, and external torque disturbances. The control law is formulated by integrating the Backstepping method, Lyapunov theory, and global fast terminal sliding mode theory, ensuring global convergence to zero within finite time and enhancing system robustness.

View Article and Find Full Text PDF

Direct-drive servo systems are extensively applied in biomimetic robotics and other bionic applications, but their performance is susceptible to uncertainties and disturbances. This paper proposes an adaptive disturbance rejection Zeta-backstepping control scheme with adjustable damping ratios to enhance system robustness and precision. An iron-core permanent magnet linear synchronous motor (PMLSM) was employed as the experimental platform for the development of a dynamic model that incorporates compensation for friction and cogging forces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!