Using an ultrafast scanning microcalorimetry apparatus capable of heating rates in excess of 10(5) Ks, we have conducted the first direct measurements of thermodynamic properties of pure and doped amorphous solid water (also referred to as low density amorphous ice) in the temperature range from 120 to 230 K. Ultrafast microcalorimetry experiments show that the heat capacity of pure amorphous solid water (ASW) remains indistinguishable from that of crystalline ice during rapid heating up to a temperature of 205+/-5 K where the ASW undergoes rapid crystallization. Based on these observations, we conclude that the enthalpy relaxation time in pure ASW must be greater than 10(-5) s at 205 K. We argue that this result contradicts the assignment of glass transition temperature to 135 K and that ASW may undergo fragile to strong transition at temperatures greater than 205 K. Unlike pure ASW, we observe an approximately twofold rise in heat capacity of CH3COOH doped ASW at 177+/-5 K. We discuss results of past studies taking into account possible influence of impurities and confinement on physical properties of ASW.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2338524DOI Listing

Publication Analysis

Top Keywords

amorphous solid
12
solid water
12
glass transition
8
pure doped
8
doped amorphous
8
ultrafast microcalorimetry
8
heat capacity
8
pure asw
8
asw
7
pure
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!