Ion permeation dynamics in carbon nanotubes.

J Chem Phys

Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.

Published: August 2006

Molecular dynamics simulations are carried out to investigate the permeation of ions and water in a membrane consisting of single wall carbon nanotubes possessing no surface charges connecting two reservoirs. Our simulations reveal that there are changes in the first hydration shell of the ions upon confinement in tubes of 0.82 or 0.90 nm effective internal diameter. Although the first minimum in the g(r) is barely changed in the nanotube compared to in the bulk solution, the hydration number of Na(+) ion is reduced by 1.0 (from 4.5 in bulk to 3.5 in the 0.90 nm tube) and the hydration number is reduced further in the 0.82 nm tube. The changes in the hydration shell of Cl(-) ion are negligible, within statistical errors. The water molecules of the first hydration shell of both ions exchange less frequently inside the tube than in the bulk solution. We compare ion trajectories for ions in the same tube under identical reservoir conditions but with different numbers of ions in the tubes. This permits investigation of changes in structure and dynamics which arise from multiple ion occupancy in a carbon nanotube possessing no surface charges. We also investigated the effects of tube flexibility. Ions enter the tubes so as to form a train of ion pairs. We find that the radial distribution profiles of Na(+) ions broaden significantly systematically with increasing number of ion pairs in the tube. The radial distribution profiles of Cl(-) ions change only slightly with increasing number of ions in the tube. Trajectories reveal that Na(+) ions do not pass each other in 0.90 nm tubes, while Cl(-) ions pass each other, as do ions of opposite charge. An ion entering the tube causes the like-charged ions preceding it in the tube to be displaced along the tube axis and positive or negative ions will exit the tube only when one or two other ions of the same charge are present in the tube. Thus, the permeation mechanism involves multiple ions and Coulomb repulsion among the ions plays an essential role.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2337289DOI Listing

Publication Analysis

Top Keywords

ions
17
hydration shell
12
tube
12
ion
8
carbon nanotubes
8
possessing surface
8
surface charges
8
changes hydration
8
shell ions
8
bulk solution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!