Molecular orbital theory and calculations are used to describe the ultraviolet singlet excited states of NO dimer. Qualitatively, we derive and catalog the dimer states by correlating them with monomer states, and provide illustrative complete active space self-consistent field calculations. Quantitatively, we provide computational estimates of vertical transition energies and absorption intensities with multireference configuration interaction and equations-of-motion coupled-cluster methods, and examine an important avoided crossing between a Rydberg and a valence state along the intermonomer and intramonomer stretching coordinates. The calculations are challenging, due to the high density of electronic states of various types (valence and Rydberg, excimer and charge transfer) in the 6-8 eV region, and the multiconfigurational nature of the ground state. We have identified a bright charge-transfer (charge-resonance) state as responsible for the broadband seen in UV absorption experiments. We also use our results to facilitate the interpretation of UV photodissociation experiments, including the time-resolved 6 eV photodissociation experiments to be presented in the next two papers of this series.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2222355DOI Listing

Publication Analysis

Top Keywords

ultraviolet singlet
8
singlet excited
8
excited states
8
photodissociation experiments
8
states
5
photodissociation dynamics
4
dynamics dimer
4
dimer theoretical
4
theoretical overview
4
overview ultraviolet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!