In last couple of decades the use of natural compounds like flavonoids as chemopreventive agents has gained much attention. Our current study focuses on identifying chemopreventive flavonoids and their mechanism of action on human prostate cancer cells. Human prostate cancer cells (PC3), stably transfected with activator protein 1 (AP-1) luciferase reporter gene were treated with four main classes of flavonoids namely flavonols, flavones, flavonones, and isoflavones. The maximum AP-1 luciferase induction of about 3 fold over control was observed with 20 microM concentrations of quercetin, chrysin and genistein and 50 microM concentration of kaempferol. At higher concentrations, most of the flavonoids demonstrated inhibition of AP-1 activity. The MTS assay for cell viability at 24 h showed that even at a very high concentration (500 microM), cell death was minimal for most of the flavonoids. To determine the role of MAPK pathway in the induction of AP-1 by flavonoids, Western blot of phospho MAPK proteins was performed. Four out of the eight flavonoids namely kaempferol, apigenin, genistein and naringenin were used for the Western Blot analysis. Induction of phospho-JNK and phospho-ERK activity was observed after two hour incubation of PC3-AP1 cells with flavonoids. However no induction of phospho-p38 activity was observed. Furthermore, pretreating the cells with specific inhibitors of JNK reduced the AP-1 luciferase activity that was induced by genistein while pretreatment with MEK inhibitor reduced the AP-1 luciferase activity induced by kaempferol. The pharmacological inhibitors did not affect the AP-1 luciferase activity induced by apigenin and naringenin. These results suggest the possible involvement of JNK pathway in genistein induced AP-1 activity while the ERK pathway seems to play an important role in kaempferol induced AP-1 activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02968247 | DOI Listing |
Elife
January 2025
Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, United States.
Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States.
The activation of IP receptor (IPR) Ca channels generates agonist-mediated Ca signals that are critical for the regulation of a wide range of biological processes. It is therefore surprising that CRISPR induced loss of all three IPR isoforms (TKO) in HEK293 and HeLa cell lines yields cells that can survive, grow and divide, albeit more slowly than wild-type cells. In an effort to understand the adaptive mechanisms involved, we have examined the activity of key Ca dependent transcription factors (NFAT, CREB and AP-1) and signaling pathways using luciferase-reporter assays, phosphoprotein immunoblots and whole genome transcriptomic studies.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China. Electronic address:
In mammals, elongation of very long-chain fatty acids protein 6 (ELOVL6) play a role in both the elongation of fatty acids and the development of associated inflammation. However, the function and transcriptional regulatory mechanisms of Elovl6 in invertebrates are poorly understood. This study aimed to examine the function of Elovl6 and its transcriptional regulatory mechanism in Scylla paramamosain.
View Article and Find Full Text PDFJ Orthop Surg Res
November 2024
Maoming People's Hospital, Maoming, 525000, Guandong, China.
Osteoporosis (OP) is a metabolic bone disease characterized by progressive decline of bone mass and bone quality, leading to bone fragility and an increased risk of fracture. The osteogenic differentiation of bone mesenchymal stem cells (BMSCs) is crucial to maintain the balance of osteoblast and osteoclast. Bioinformatics prediction indicates that ZFP36 ring finger protein (ZFP36), an RNA-binding protein, is a potential target of OP.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
January 2025
Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea.
Echinochrome A (Ech A) isolated from marine organisms is a therapeutic effector for various cardiovascular diseases, but its precise mechanisms are unclear. This study identified the role and mechanisms mediating the effects of Ech A on the migration of vascular smooth muscle cells (VSMCs) induced by high-mobility group box 1 (HMGB1). Compared to the control cells, the migration of VSMCs stimulated with HMGB1 (100 ng/ml) was markedly increased, which was significantly attenuated in cells pretreated with MPIIIB10 (100 ng/ml), a neutralizing monoclonal antibody for osteopontin (OPN).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!