A vacuolar acid phosphatase (APase) that accumulates during phosphate (Pi) starvation of Arabidopsis (Arabidopsis thaliana) suspension cells was purified to homogeneity. The final preparation is a purple APase (PAP), as it exhibited a pink color in solution (A(max) = 520 nm). It exists as a 100-kD homodimer composed of 55-kD glycosylated subunits that cross-reacted with an anti-(tomato intracellular PAP)-IgG. BLAST analysis of its 23-amino acid N-terminal sequence revealed that this PAP is encoded by At5g34850 (AtPAP26; one of 29 PAP genes in Arabidopsis) and that a 30-amino acid signal peptide is cleaved from the AtPAP26 preprotein during its translocation into the vacuole. AtPAP26 displays much stronger sequence similarity to orthologs from other plants than to other Arabidopsis PAPs. AtPAP26 exhibited optimal activity at pH 5.6 and broad substrate selectivity. The 5-fold increase in APase activity that occurred in Pi-deprived cells was paralleled by a similar increase in the amount of a 55-kD anti-(tomato PAP or AtPAP26)-IgG immunoreactive polypeptide and a >30-fold reduction in intracellular free Pi concentration. Semiquantitative reverse transcription-PCR indicated that Pi-sufficient, Pi-starved, and Pi-resupplied cells contain similar amounts of AtPAP26 transcripts. Thus, transcriptional controls appear to exert little influence on AtPAP26 levels, relative to translational and/or proteolytic controls. APase activity and AtPAP26 protein levels were also up-regulated in shoots and roots of Pi-deprived Arabidopsis seedlings. We hypothesize that AtPAP26 recycles Pi from intracellular P metabolites in Pi-starved Arabidopsis. As AtPAP26 also exhibited alkaline peroxidase activity, a potential additional role in the metabolism of reactive oxygen species is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1630754PMC
http://dx.doi.org/10.1104/pp.106.087171DOI Listing

Publication Analysis

Top Keywords

atpap26
10
acid phosphatase
8
suspension cells
8
atpap26 exhibited
8
apase activity
8
arabidopsis
7
biochemical molecular
4
molecular characterization
4
characterization atpap26
4
atpap26 vacuolar
4

Similar Publications

Tolerance to salinity is a complex genetic trait including numerous physiological processes, such as metabolic pathways and gene networks; thereby, identification of genes indirectly affecting, as well as those directly influencing, is of utmost importance. In this study, we identified and elucidated the functional characterization of and genes, as two novel purple acid phosphatases associated with high-salt tolerance in NaCl-stressed conditions. Here, the overexpression of both genes enhanced the expression level of , , , , , and genes, involving in the K/Na homeostasis pathway.

View Article and Find Full Text PDF

The Critical Role of and Genes in Arabidopsis Phosphate Compensation Network.

Front Plant Sci

September 2020

Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

Purple acid phosphatases ()-encoding genes form a complex network that play a critical role in plant phosphate (Pi) homeostasis. Mostly, the functions of PAPs were investigated individually. However, the interactions of most of these genes in response to various concentrations of available Pi remain unknown.

View Article and Find Full Text PDF

Structural elements that modulate the substrate specificity of plant purple acid phosphatases: Avenues for improved phosphorus acquisition in crops.

Plant Sci

May 2020

School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, QLD 4072, Australia; Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD 4072, Australia. Electronic address:

Phosphate acquisition by plants is an essential process that is directly implicated in the optimization of crop yields. Purple acid phosphatases (PAPs) are ubiquitous metalloenzymes, which catalyze the hydrolysis of a wide range of phosphate esters and anhydrides. While some plant PAPs display a preference for ATP as the substrate, others are efficient in hydrolyzing phytate or 2-phosphoenolpyruvate (PEP).

View Article and Find Full Text PDF

A high level of the secondary metabolite chicoric acid is produced by intracellular Pi supply and extracellular phosphate limiting in Echinacea purpurea hairy roots. Chicoric acid (CA) is a secondary metabolite which is gained from Echinacea purpurea. It has been found to be one of the most potent HIV integrase inhibitors with antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

Background: Overexpression of known genes encoding key phosphate (Pi)-metabolizing enzymes, such as acid phosphatases (APases), is presumed to help plants with Pi availability and absorption as they are mostly exposed to suboptimal environmental conditions for this vital element.

Objectives: In this study, the overexpression effect of , one of the main contributors in retrieving Pi from intracellular and extracellular compounds, was evaluated from various viewes in tobacco plant.

Materials And Methods: As a heterologous expression system, the encoding cDNA sequence of AtPAP26 was transferred into tobacco plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!