PepT1 is an intestinal epithelial apical membrane transporter that is expressed in the small intestine, with little or no expression in the normal colon. However, we previously demonstrated that colonic PepT1 may be expressed during chronic inflammation. To begin elucidating inflammatory hPepT1 signaling, we herein investigated the long term leptin treatments, on PepT1 expression and activity in Caco2-BBE cells, and began to reveal the involved signaling pathways. We successfully cloned the 723-bp hPepT1 promoter region and identified the human transcription initiation site 86 bp upstream from the translation start site. Leptin treatment dose- and time-dependently increased hPepT1 promoter and transport activities in Caco2-BBE cells, with maximal activity observed in cells treated with 100 nM leptin for 8 h. Under these conditions, we observed 2-fold increases in hPepT1 mRNA and protein expression, as well as increased transport activity. Our molecular analyses of possible signal-transduction pathways revealed that leptin treatment enhanced the intracellular levels of cAMP and phosphorylated cAMP-response element-binding protein (CREB) protein in Caco2-BBE cells, whereas our deletion, mutation, and CDX2 overexpression analyses demonstrated that interaction of the Cdx2 and phosphorylated CREB transcription factors was essential for leptin-induced hPepT1 transcription in Caco2-BBE cells. Our results indicate that leptin, which is increased in inflamed colonic mucosa, triggers colonic expression of hPepT1 via the CREB and Cdx2 transcription factors. These findings provide important new insights into the mechanisms of intestinal inflammation and may suggest new therapeutic modalities in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M604267200 | DOI Listing |
J Crohns Colitis
August 2024
Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands.
Aims: Patients with mutations in ATP8B1 develop progressive familial intrahepatic cholestasis type 1 [PFIC1], a severe liver disease that requires life-saving liver transplantation. PFIC1 patients also present with gastrointestinal problems, including intestinal inflammation and diarrhoea, which are aggravated after liver transplantation. Here we investigate the intestinal function of ATP8B1 in relation to inflammatory bowel diseases.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
July 2023
University of Chicago Pritzker School of Medicine, Chicago, Illinois, United States.
Kidney stones (KSs) are very common, excruciating, and associated with tremendous healthcare cost, chronic kidney disease (CKD), and kidney failure (KF). Most KSs are composed of calcium oxalate and small increases in urinary oxalate concentration significantly enhance the stone risk. Oxalate also potentially contributes to CKD progression, kidney disease-associated cardiovascular diseases, and poor renal allograft survival.
View Article and Find Full Text PDFBiomed Opt Express
June 2022
Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands.
High-NA light sheet illumination can improve the resolution of single-molecule localization microscopy (SMLM) by reducing the background fluorescence. These approaches currently require custom-made sample holders or additional specialized objectives, which makes the sample mounting or the optical system complex and therefore reduces the usability of these approaches. Here, we developed a single-objective lens-inclined light sheet microscope (SOLEIL) that is capable of 2D and 3D SMLM in thick samples.
View Article and Find Full Text PDFLife Sci
December 2021
Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China. Electronic address:
UC is a chronic, nonspecific disease and characterized by a chronic relapsing intestinal inflammation, which puts a person at a higher risk of developing bowel cancer, while the causes of UC are unknown. Recently, with the development of microarray technology, more and more studies are focusing on the potential roles of long noncoding RNAs (lncRNAs) in the pathogenesis of diseases. The purpose of this study is to devise a method, based on cDNA microarray probe genomics data, to computationally determine the potential function of evolutionary conserved lncRNAs in ulcerative colitis (UC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!