Epidemiological studies indicate that adequate dietary folate is protective against colon cancer, although mechanisms remain largely elusive. We investigated the effects of genetic disruptions of folate transport and metabolism and of dietary folate deficiency in a mouse model of colon cancer, the Apc(min/+) mouse. Apc(min/+) mice with heterozygous knockout of the gene for reduced folate carrier 1 (Rfc1(+/-)) developed significantly fewer adenomas compared to Rfc1(+/+)Apc(min/+) mice [30.3+/-4.6 vs. 60.4+/-9.4 on a control diet (CD) and 42.6+/-4.4 vs. 55.8+/-7.6 on a folate-deficient diet, respectively]. Rfc1(+/-)Apc(min/+) mice also carried a lower tumor load, an indicator of tumor size as well as of tumor number. In contrast, there were no differences in adenoma formation between Apc(min/+) mice carrying a knockout allele for methionine synthase (Mtr(+/-)), an enzyme that catalyzes folate-dependent homocysteine remethylation, and Mtr(+/+)Apc(min/+) mice. However, in both Mtr groups of mice, dietary folate deficiency significantly increased adenoma number (from 32.3+/-3.8 on a CD to 48.1+/-4.2 on a folate-deficient diet), increased plasma homocysteine, decreased global DNA methylation in preneoplastic intestines and increased apoptosis in tissues. There were no genotype-associated differences in these parameters in the Rfc1 group, suggesting that the protection conferred by Rfc1 deficiency is carried out through a different mechanism. In conclusion, genetic and nutritional disturbances in folate metabolism can have distinct influences on tumorigenesis in Apc(min/+) mice; altered levels of homocysteine, global DNA methylation and apoptosis may contribute mechanistically to dietary influence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jnutbio.2006.06.001 | DOI Listing |
Colorectal carcinoma (CRC) progression is associated with an increase in PROX1+ tumor cells, which exhibit features of CRC stem cells and contribute to metastasis. Here, we aimed to provide a better understanding to the function of PROX1+ cells in CRC, investigating their progeny and their role in therapy resistance. PROX1+ cells in intestinal adenomas of ApcMin/+ mice expressed intestinal epithelial and CRC stem cell markers, and cells with high PROX1 expression could both self-renew tumor stem/progenitor cells and contribute to differentiated tumor cells.
View Article and Find Full Text PDFInt Immunol
January 2025
Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
Several mesenchymal cell populations are known to regulate intestinal stem cell (ISC) self-renewal and differentiation. However, the influences of signaling mediators derived from mesenchymal cells other than ISC niche factors on epithelial homeostasis remain poorly understood. Here, we show that host and microbial metabolites, such as taurine and GABA, act on PDGFRαhigh Foxl1high sub-epithelial mesenchymal cells to regulate their transcription.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
Gut microbes play a crucial role in regulating the tumor microenvironment (TME) of colorectal cancer (CRC). Nevertheless, the deep mechanism between the microbiota-TME interaction has not been well explored. In this study, we for the first time discovered that () effectively suppressed tumor growth both in the AOM/DSS-induced CRC model and the spontaneous adenoma model.
View Article and Find Full Text PDFJ Hematol Oncol
January 2025
Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
Background: Targeting glucose uptake by glucose transporter (GLUT) inhibitors is a therapeutic opportunity, but efforts on GLUT inhibitors have not been successful in the clinic and the underlying mechanism remains unclear. We aim to identify the key metabolic changes responsible for cancer cell survival from glucose limitation and elucidate its mechanism.
Methods: The level of phosphorylated YAP was analyzed with Western blotting and Phos-tag immunoblotting.
J Transl Med
December 2024
Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
Background: Gasdermin D (GSDMD) is a key effector molecule that activates pyroptosis through its N terminal domain (GSDMD-NT). However, the roles of GSDMD in colorectal cancer (CRC) have not been fully explored. The role of the full-length GSDMD (GSDMD-FL) is also not clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!