SHP-2 is a tyrosine phosphatase which functions as a positive regulator downstream of RTKs, activating growth-stimulatory signalling pathways. To date, very few G protein-coupled receptors (GPCRs) have been shown to be connected to SHP-2 and very little is known about the positive role of SHP-2 in GPCR signalling. The CCK2 receptor (CCK2R), a GPCR, is now recognized to mediate mitogenic effects of gastrin on gastrointestinal cells. In the present study, we demonstrate the role of SHP-2 in the activation of the AKT pathway by the CCK2R in COS-7 cells transfected with the CCK2R and in a pancreatic cancer cell line expressing the endogenous receptor. Using surface plasmon resonance analysis, we identified a highly conserved ITIM motif, containing the tyrosine residue 438, located in the C-terminal intracellular tail of the CCK2R which directly interacts with the SHP-2 SH2 domains. The interaction was confirmed by pull down assays and co-immunoprecipitation of the receptor with SHP-2. This interaction was transiently increased following gastrin stimulation of the CCK2R and correlated with the tyrosine phosphorylation of SHP-2. Mutational analysis of the key ITIM residue 438 confirmed that the CCK2R ITIM sequence is required for interaction with SHP-2 and the activation of the AKT pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2006.07.003 | DOI Listing |
ACS Omega
December 2024
Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China.
A panel of ferrocenyl-substituted curcumin derivatives has been designed and synthesized as protein tyrosine phosphatase proto-oncogene SHP-2 inhibitors. Antiproliferative activities of the synthesized compounds were tested against colorectal cancer cell lines (including RKO, SW480, and CT26). Compound showed excellent activities against the tested cell lines with IC values of 5.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
December 2024
Department of Stomatology, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
Objectives: To investigate the mechanism of PHPS1 for promoting apoptosis of oral squamous cell carcinoma cells and the role of AMPK in regulating tumor angiogenesis under hypoxic conditions.
Methods: Human oral squamous cell carcinoma Ca9-22 cells cultured in hypoxic conditions (1% O) were inoculated subcutaneously in 16 nude mice, which were divided into control group and PHPS1 group (8) for treatment with 10% DMSO and 10% PHPS1 respectively. Tumor growth in the mice was monitored till 14 days after the treatment, and the xenografts were examined pathologically using HE staining.
Cancer Cell Int
November 2024
Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd, Taipei, Taiwan.
Sci China Life Sci
January 2025
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China.
Targeting the PD-1/PD-L1 axis with small-molecular inhibitors is a promising approach for immunotherapy. Here, we identify a natural pentacyclic triterpenoid, Pygenic Acid A (PA), as a PD-1 signaling inhibitor. PA exerts anti-tumor activity in hPD-1 knock-in C57BL/6 mice and enhances effector functions of T cells to promote immune responses by disrupting the PD-1 signaling transduction.
View Article and Find Full Text PDFCell Death Dis
August 2024
State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!