The repair of corneal wounds requires both epithelial cell adhesion and migration. We have studied the early adhesion process of immortalized human corneal epithelial (HCE) cells and show by field emission scanning electron microscopy (FESEM) that the cells first adhere via foot-like process to the growth substratum and later present lamellar spreading. During early adhesion indirect immunofluorescence showed that the cells codeposited laminin (Lm) -332 and the large subunit of tenascin-C (Tn-CL) as a demarcated plaque beneath the cells. Instead, unprocessed Lm-332 (alpha 3'32) was found in a wider area in cells showing lamellar spreading and was also prominently expressed in the cytoplasm of the migrating marginal cells in the in vitro wounded HCE cultures. Confocal laser scanning microscopy (CLSM) showed that the Golgi apparatus was located to the vicinity of the Lm-332/Tn-CL-containing adhesion plaque and accordingly treatment of the cells with demecolcine, dispersing the Golgi apparatus, prevented the formation of plaques. This suggests that formation of the adhesion plaque depends on a direct vectorial secretion of Lm-332 and Tn-CL to the culture substratum. Instead, cytochalasin B treatment disrupted microfilaments and arborized the cells but did not affect the deposition of Tn-CL/Lm-332 as a plaque beneath the cells. The suggestion was supported by immunoprecipitation experiments which showed that Tn-CL and Lm alpha 3' chain were found in cell-free matrices on the culture substratum of spreading cells but not at all (Tn-CL) or much less (Lm-332) in the culture medium. Quantitative cell adhesion experiments showed that HCE cells did not adhere to plain Tn-C coat and that integrin (Int) alpha(3)beta(1) mediated the adhesion of HCE cells to purified Lm-332 and to Lm-332/Tn-C while Int beta4 did not mediate adhesion to these proteins. Taken together, our data suggest that Lm-332 and Tn-CL cooperate in early adhesion process of HCE cells. Furthermore, the results show that Lm-3'32 isoform functions in the spreading of the cells beyond the early adhesion stage and appears to emerge into HCE cells starting to migrate in experimental wounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2006.07.021 | DOI Listing |
Biomaterials
December 2024
Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China. Electronic address:
Liver resection represents a main curative treatment for patients with early-stage hepatocellular carcinoma (HCC), but there is a rather high incidence of postoperative HCC relapse, which severely shortens long-term survival time. Currently, no standard adjuvant strategies are available for preventing HCC relapse in clinical practice. Impaired natural killer (NK) cell anti-tumor immunity has been disclosed as a crucial root of HCC relapse, indicating that reinstating NK cell anti-tumor immunity may show promise to curb HCC relapse.
View Article and Find Full Text PDFACS Nano
January 2025
National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.
Inadequate vascularization significantly hampers wound recovery by limiting nutrient delivery. To address this challenge, we extracted membrane vesicles from (LMVs) and identified their angiogenic potential via transcriptomic analysis. We further developed a composite hydrogel system (Gel-LMVs) by anchoring LMVs within carboxylated chitosan and cross-linking it with oxidized hyaluronic acid through a Schiff base reaction.
View Article and Find Full Text PDFGinekol Pol
January 2025
Faculty of Medicine, Lazarski University, Warsaw, Poland, Poland.
In women after hematopoietic stem cell transplantation (HSCT), complications associated with the original disease and therapies used both before and after transplantation often occur, which significantly affects their quality of life. The most common gynaecological complications include secondary cancers, premature ovarian insufficiency (POI), infertility and chronic graft-versus-host disease (cGVHD). Cervical cancer is the most common secondary genital cancer in patients after HSCT.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Colorectal Surgery, Monash Health, Clayton, Victoria, Australia.
Small bowel obstruction (SBO) is a leading cause of general surgery inpatient admissions. SBO is most commonly associated with postoperative adhesions; however, neoplastic SBO is an important differential. Here, we present a case of neoplastic SBO secondary to leiomyosarcoma in a patient with known mature B cell lymphoma.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan. Electronic address:
Myelin is an electrical insulator that enables saltatory nerve conduction and is essential for proper functioning of the central nervous system (CNS). It is formed by oligodendrocytes (OLs) in the CNS, and during OL development various molecules, including extracellular matrix (ECM) proteins, regulate OL differentiation and myelination; however, the role of ECM proteins in these processes is not well understood. Our present work is centered on the analyses of the expression and function of fibulin-7 (Fbln7), an ECM protein of the fibulin family, in OL differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!