AI Article Synopsis

  • A portable amperometric potentiostat was designed to detect bilirubin levels using an electrochemical sensor, offering moderate accuracy, compact size, low cost, and high portability.
  • The bilirubin detection was enabled by a specially coated electrode made from a molecularly imprinted polymer (MIP) that specifically recognizes bilirubin.
  • Performance evaluation showed that the new potentiostat achieved stable results, with a sensitivity of 1.344±0.38 microA/mg dl, indicating its effectiveness for precise bilirubin detection in practical applications.

Article Abstract

A portable amperometric potentiostat was designed and implemented in this work. It was developed to acquisit the current signals produced from bilirubin by an electrochemical sensor. Based on an SOC-based chip, this potentiostat has the merits of moderate accuracy, small size, low cost, and high portability. The bilirubin electrode was prepared by synthesizing a thin layer of bilirubin imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) onto the Au layer. With the molecularly imprinted polymer (MIP) film, specific detection of bilirubin was successfully achieved. The cyclic voltammogram of the electrode was measured from this assembled potentiostat. The performance from a commercial potentiostat was considered rather stable and was used as a reference to examine and evaluate the performance of the assembled potentiostat. The detected current signals by the bilirubin sensing were obtained. Linear calibration with a sensitivity of 1.344+/-0.38 microA/mg dl was achieved. Our experimental results showed that the proposed potentiostat's performance could achieve sufficient performance. The evaluation was also made from the aspects such as reset time and steady-response time. The self-assembled potentiostat thus demonstrated its ability in precise detection of bilirubin from an electrode layered with the imprinted polymer film.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2006.07.036DOI Listing

Publication Analysis

Top Keywords

current signals
8
bilirubin electrode
8
imprinted polymer
8
detection bilirubin
8
assembled potentiostat
8
potentiostat
6
bilirubin
6
portable potentiostat
4
potentiostat bilirubin-specific
4
bilirubin-specific sensor
4

Similar Publications

Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.

View Article and Find Full Text PDF

Piezo-Capacitive Flexible Pressure Sensor with Magnetically Self-Assembled Microneedle Array.

ACS Sens

January 2025

CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.

Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors.

View Article and Find Full Text PDF

Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies.

ACS Appl Mater Interfaces

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.

The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network.

View Article and Find Full Text PDF

SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE (SMXL) proteins comprise a family of plant growth regulators that includes downstream targets of the karrikin (KAR)/KAI2 ligand (KL) and strigolactone (SL) signaling pathways. Following the perception of KAR/KL or SL signals by α/β hydrolases, some types of SMXL proteins are polyubiquitinated by an E3 ubiquitin ligase complex containing the F-box protein MORE AXILLARY GROWTH2 (MAX2)/DWARF3 (D3), and proteolyzed. Because SMXL proteins interact with TOPLESS (TPL) and TPL-related (TPR) transcriptional corepressors, SMXL degradation initiates changes in gene expression.

View Article and Find Full Text PDF

QuanFormer: A Transformer-Based Precise Peak Detection and Quantification Tool in LC-MS-Based Metabolomics.

Anal Chem

January 2025

State Key Laboratory of Cellular Stress Biology, Institute of Artificial Intelligence, School of Life Sciences, Faculty of Medicine and Life Sciences, National Institute for Data Science in Health and Medicine, XMU-HBN skin biomedical research center, Xiamen University, Xiamen, Fujian 361102, China.

In metabolomic analysis based on liquid chromatography coupled with mass spectrometry, detecting and quantifying intricate objects is a massive job. Current peak picking methods still cause high rates of incorrectly picked peaks to influence the reliability and reproducibility of results. To address these challenges, we developed QuanFormer, a deep learning method based on object detection designed to accurately quantify peak signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!