The ability to selectively measure serine enantiomer concentrations in rat brain microdialysate is essential during drug discovery to study the interaction of d-serine with the N-methyl-d-aspartate (NMDA) subtype of the glutamate receptor. NMDA receptor-stimulating agents, such as d-serine, have been shown to reduce the negative symptoms and cognitive dysfunction in individuals with schizophrenia when added to conventional or atypical antipsychotic drug regimens. In the work presented here, an LC/MS/MS assay was developed and validated to simultaneously measure d-serine and l-serine concentrations in rat brain microdialysate. Reverse phase chromatographic resolution of the enantiomers was obtained through derivatization with 1-fluoro-2,4-dinitrophenyl-5-l-alanine amide (Marfey's reagent). The assay was validated to determine concentrations over the range of 10-7500 ng/mL using electrospray ionization and multiple reaction monitoring (MRM). Both intra- and inter-day precision and accuracy were less than 16.5% (RE) and 7% (CV) for both analytes, respectively, and assay throughput was increased significantly relative to existing methodologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2006.08.029 | DOI Listing |
Sci Rep
January 2025
Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.
Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA. Electronic address:
Global healthcare systems are under tremendous strain due to the increasing prevalence of neurodegenerative disorders. Growing data suggested that overconsumption of high-fat/high-carbohydrates diet (HFHCD) is associated with enhanced incidence of metabolic alterations, neurodegeneration, and cognitive dysfunction. Functional foods have gained prominence in curbing metabolic and neurological deficits.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.
Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.
Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.
J Integr Neurosci
January 2025
Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China.
Background: Recent studies suggest that the anterior limb of the internal capsule may be an area of convergence for multiple compulsion loops. In this study, the role of different dopaminergic compulsion loops in the mechanism of obsessive-compulsive disorder (OCD) was investigated by selectively damaging dopaminergic neurons or fibers in the corresponding targets with 6-hydroxydopamine (6-OHDA) and depicting the anatomical map of various compulsion loops located in the anterior limb of the internal capsule.
Methods: A total of 52 male Sprague Dawley (SD) rats were exposed to either saline (1 mL/kg, NS group, n = 6) or quinpirole (QNP, dopamine D2-agonist, 0.
Nutrients
January 2025
Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
Background/objectives: While studies in rat pups suggest that early zinc exposure is critical for optimal brain structure and function, associations of prenatal zinc intake with measures of brain development in infants are unknown. This study aimed to assess the associations of maternal zinc intake during pregnancy with MRI measures of brain tissue microstructure and neurodevelopmental outcomes, as well as to determine whether MRI measures of the brain mediated the relationship between maternal zinc intake and neurodevelopmental indices.
Methods: Forty-one adolescent mothers were recruited for a longitudinal study during pregnancy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!