Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lipase catalyzed copolymerization of the monomers lactide and glycolide by Pseudomonas cepacia employing a molar ratio of 80L/20G has been studied. The copolymers were characterized by MALDI-ToF-MS, DSC, SEC and NMR. MALDI-ToF-MS has successfully been used not only to determine end groups and chemical composition but even the microstructure of the copolymers. We demonstrated that for this lipase catalyzed copolymerization, the main product of the reaction at 100 degrees C was linear homopolymer of lactide while at 130 degrees C the main product was cyclic random copolymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm060466v | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!