In the present report, the use of calibrated near infrared (NIR) spectroscopy for rapid prediction of solid wood density is described. NIR spectra were obtained from the three sections (cross, radial and tangential section) of each Chinese fir sample. The authors found that the spectra of the three sections are different and the correlation coefficients between the laboratory-determined density and the NIR-fitted data are different, too. The prediction results showed that the model based on NIR spectra taken from the cross section is the best, and the correlation coefficients are 0.94 (cross), 0.85 (radial) and 0.81 (tangential), respectively. Using the cross model to predict the density of unknown wood samples, we can see: r2 is 0.977 and the standard deviation (STDEV) is only 0.006.
Download full-text PDF |
Source |
---|
Anal Sci
January 2025
Chitose Institute of Science and Technology, Chitose, Hokkaido, 066-8655, Japan.
Cartilage is a connective tissue composed of mainly water, collagen (COL) and proteoglycans (PGs) including chondroitin sulfate (CS). Near-infrared (NIR) spectroscopy is adequate for examination of soft and hard tissues with large amount of water non-destructively and non-invasively. We measured tablets containing CS and COL using NIR spectroscopy to develop an evaluation method for PGs in cartilage non-destructively and non-invasively.
View Article and Find Full Text PDFGels
January 2025
Department of Electrical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
A two-dimensional array of microfluidic ports with remote-controlled valve actuation is of great interest for applications involving localized chemical stimulation. Herein, a macroporous silicon-based platform where each pore contains an independently controllable valve made from poly(N-isopropylacrylamide) (PNIPAM) brushes is proposed. These valves are coated with silica-encapsulated gold nanorods (GNRs) for NIR-actuated switching capability.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
-β, β-β' trifused porphyrins incorporating two distinct active methylene groups (MN = malononitrile and IND = 1,3-indanedione) and their corresponding metal complexes with Cu(II) and Zn(II) have been synthesized with good to excellent yields and characterized by various spectroscopic techniques and spectrometric methods. Single crystal X-ray analysis of the Zn(II) complex ZnTFPMB(MN) (where TFP = trifused porphyrin and MB = mono benzo) revealed a nonplanar 'armchair' type conformation with a twist angle of 24.10°.
View Article and Find Full Text PDFFood Res Int
February 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China. Electronic address:
The aim of this study was to explore application of visible and near-infrared (Vis/NIR) spectroscopy combined with machine learning models for SSC and TA prediction of hybrid citrus. The Vis/NIR spectra of samples including navel-region, equator-region and multi-region combination spectra in navel-region and equator-region were collected using a benchtop equipment. The performance of SSC and TA prediction models with different region spectra, including partial least squares (PLS), random forest (RF), k-nearest neighbors (KNN), support vector machine (SVM) and multilayer feedforward neural network (MFNN), was assessed.
View Article and Find Full Text PDFAppl Spectrosc
January 2025
Department of Chemistry, Idaho State University, Pocatello, Idaho, USA.
Impeding linear calibration models from accurately predicting target sample analyte amounts are the target sample-wise deviations in measurement profiles (e.g., spectra) relative to calibration samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!