In submerged culture of Ganoderma lucidum, the pH optimum for cell growth has been shown to be lower than that for exopolysaccharides (EPS) formation. Therefore, in the present study, a two-stage pH-control strategy was employed to maximize the productions of mycelial biomass and EPS. When compared, a batch culture without pH control had a maximum concentration of EPS and endopolysaccharides, which was much lower than those with pH control. Maximum mycelial growth (12.5 g/L) and EPS production (4.7 g/L) were achieved by shifting the controlled pH from 3.0 to 6.0 after day 4. The contrast between the controlled-pH process and uncontrolled pH was marked. By using various two-stage culture processes, it was also observed that culture pH has a significant affect on the yield of product, mycelial morphology, chemical composition, and molecular weight of EPS. A detailed observation of mycelial morphology revealed that the productive morphological form for EPS production was a dispersed pellet (controlled pH shifting from 3.0 to 6.0) rather than a compact pellet with a dense core area (controlled pH 4.5) or a feather-like pellet (controlled pH shifting from 6.0 to 3.0). Three different polysaccharides were obtained from each pH conditions, and their molecular weights and chemical compositions were significantly different.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/abab:134:3:249 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!