Electronic devices primarily use electronic rather than ionic charge carriers. Using soft-contact lamination, we fabricated ionic junctions between two organic semiconductors with mobile anions and cations, respectively. Mobile ionic charge was successfully deployed to control the direction of electronic current flow in semiconductor devices. As a result, these devices showed electroluminescence under forward bias and a photovoltage upon illumination with visible light. Thus, ionic charge carriers can enhance the performance of existing electronic devices, as well as enable new functionalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1128145 | DOI Listing |
PLoS One
January 2025
Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.
Ion exchange membranes (IEMs) are permselective membranes that, in principle, only allow the flow of ions with a specific charge sign, opposite to that of the fixed membrane ionic groups (counter-ions). This charge-based selectivity, like the size-based selectivity of classic semipermeable membranes, leads to an uneven distribution of permeating ions on the two sides of the membrane, which allows for ion separation or recovery in various processes in industry or environmental protection. Here, we apply the principles of mass balance, charge neutrality, and equality of electrochemical potentials in the state of thermodynamic equilibrium to provide a simple method for estimating the Gibbs-Donnan factors and the equilibrium concentrations of permeating ions in two compartments separated by an ideal IEM, i.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
After cyclo-pentazolate anion, a 5/6 fused structure of N is constructed, and four novel nitrogen-rich ionic compounds are assembled on its basis. The results of the quantum calculations revealed an uneven distribution of electrons on cyclo-N , with significant charge density near the N5/N9 atoms and an ADCH charge of -0.425.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States.
We demonstrate, using non-equilibrium molecular dynamics simulations, that lipid membrane capacitance varies with surface charge accumulation linked to membrane shape and curvature changes. Specifically, we show that lipid membranes exhibit a hysteretic response when exposed to oscillatory electric fields. The electromechanical coupling in these membranes leads to hysteretic buckling, in which the membrane can spontaneously buckle in one of two distinct directions along the electric field, even for the same ionic charge accumulation at the water-membrane interface.
View Article and Find Full Text PDFACS Nano
January 2025
Adolphe Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland.
Biological nanopores offer a promising approach for single-molecule analysis of nucleic acids, peptides, and proteins. The work presented here introduces a biological nanopore formed by the self-assembly of complement component 9 (C9). This exceptionally large and cylindrical protein pore is composed of 20 ± 4 monomers of C9 resulting in a diameter of 10 ± 4 nm and an effective pore length of 13 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!