Many complementary or competing signalling pathways bear an influence on the myometrium at any one time, and because the retinoic acid signalling pathway influences differentiation of a wide array of human tissues, this may be one of the determinants of myometrial differentiation during pregnancy. We have explored the novel hypothesis that the retinoids may act as important regulators in controlling the differentiated state of the human myometrium during pregnancy by characterizing the expression profiles for cellular retinoid-binding proteins CRBPI, CRABPI and CRABPII in non-pregnant, pregnant (non-labouring) and labouring human myometrium taken from the functionally distinct upper and lower uterine segments. In addition, we have investigated the effect of all-trans retinoic acid (ATRA) on the expression of several retinoic acid response genes including cyclooxygenase-2 (COX-2) and connexin-43 (Cx-43). Different spatial and temporal patterns of expression were observed for CRBPI, CRABPI and CRABPII within the upper and lower uterine segments through the three trimesters of pregnancy and in labour. Furthermore, the expression of COX-2, Cx-43, CRABPI, the transcription factor c-Jun and the retinoic acid receptor RARbeta altered in response to different concentrations of ATRA, suggesting that the differential expression of cellular retinoid-binding proteins may lead to different levels of retinoic acid being delivered to its nuclear targets, leading to the differential expression of specific target genes within the myometrium during pregnancy.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molehr/gal070DOI Listing

Publication Analysis

Top Keywords

retinoic acid
20
cellular retinoid-binding
12
retinoid-binding proteins
12
human myometrium
12
myometrium pregnancy
12
crbpi crabpi
8
crabpi crabpii
8
upper lower
8
lower uterine
8
uterine segments
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!